• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 #ifndef VK_UTIL_H
24 #define VK_UTIL_H
25 
26 /* common inlines and macros for vulkan drivers */
27 
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <vulkan/vulkan.h>
31 
32 #include <functional>
33 #include <optional>
34 
35 #include "common/vk_struct_id.h"
36 
37 struct vk_struct_common {
38     VkStructureType sType;
39     struct vk_struct_common *pNext;
40 };
41 
42 struct vk_struct_chain_iterator {
43     vk_struct_common *value;
44 };
45 
46 #define vk_foreach_struct(__iter, __start)         \
47     for (struct vk_struct_common *__iter =         \
48              (struct vk_struct_common *)(__start); \
49          __iter; __iter = __iter->pNext)
50 
51 #define vk_foreach_struct_const(__iter, __start)         \
52     for (const struct vk_struct_common *__iter =         \
53              (const struct vk_struct_common *)(__start); \
54          __iter; __iter = __iter->pNext)
55 
56 /**
57  * A wrapper for a Vulkan output array. A Vulkan output array is one that
58  * follows the convention of the parameters to
59  * vkGetPhysicalDeviceQueueFamilyProperties().
60  *
61  * Example Usage:
62  *
63  *    VkResult
64  *    vkGetPhysicalDeviceQueueFamilyProperties(
65  *       VkPhysicalDevice           physicalDevice,
66  *       uint32_t*                  pQueueFamilyPropertyCount,
67  *       VkQueueFamilyProperties*   pQueueFamilyProperties)
68  *    {
69  *       VK_OUTARRAY_MAKE(props, pQueueFamilyProperties,
70  *                         pQueueFamilyPropertyCount);
71  *
72  *       vk_outarray_append(&props, p) {
73  *          p->queueFlags = ...;
74  *          p->queueCount = ...;
75  *       }
76  *
77  *       vk_outarray_append(&props, p) {
78  *          p->queueFlags = ...;
79  *          p->queueCount = ...;
80  *       }
81  *
82  *       return vk_outarray_status(&props);
83  *    }
84  */
85 struct __vk_outarray {
86     /** May be null. */
87     void *data;
88 
89     /**
90      * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
91      * data is null.
92      */
93     uint32_t cap;
94 
95     /**
96      * Count of elements successfully written to the array. Every write is
97      * considered successful if data is null.
98      */
99     uint32_t *filled_len;
100 
101     /**
102      * Count of elements that would have been written to the array if its
103      * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
104      * when `*filled_len < wanted_len`.
105      */
106     uint32_t wanted_len;
107 };
108 
__vk_outarray_init(struct __vk_outarray * a,void * data,uint32_t * len)109 static inline void __vk_outarray_init(struct __vk_outarray *a, void *data,
110                                       uint32_t *len) {
111     a->data = data;
112     a->cap = *len;
113     a->filled_len = len;
114     *a->filled_len = 0;
115     a->wanted_len = 0;
116 
117     if (a->data == NULL) a->cap = UINT32_MAX;
118 }
119 
__vk_outarray_status(const struct __vk_outarray * a)120 static inline VkResult __vk_outarray_status(const struct __vk_outarray *a) {
121     if (*a->filled_len < a->wanted_len)
122         return VK_INCOMPLETE;
123     else
124         return VK_SUCCESS;
125 }
126 
__vk_outarray_next(struct __vk_outarray * a,size_t elem_size)127 static inline void *__vk_outarray_next(struct __vk_outarray *a,
128                                        size_t elem_size) {
129     void *p = NULL;
130 
131     a->wanted_len += 1;
132 
133     if (*a->filled_len >= a->cap) return NULL;
134 
135     if (a->data != NULL)
136         p = ((uint8_t *)a->data) + (*a->filled_len) * elem_size;
137 
138     *a->filled_len += 1;
139 
140     return p;
141 }
142 
143 #define vk_outarray(elem_t)        \
144     struct {                       \
145         struct __vk_outarray base; \
146         elem_t meta[];             \
147     }
148 
149 #define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
150 #define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
151 
152 #define vk_outarray_init(a, data, len) \
153     __vk_outarray_init(&(a)->base, (data), (len))
154 
155 #define VK_OUTARRAY_MAKE(name, data, len)    \
156     vk_outarray(__typeof__((data)[0])) name; \
157     vk_outarray_init(&name, (data), (len))
158 
159 #define vk_outarray_status(a) __vk_outarray_status(&(a)->base)
160 
161 #define vk_outarray_next(a)                            \
162     ((vk_outarray_typeof_elem(a) *)__vk_outarray_next( \
163         &(a)->base, vk_outarray_sizeof_elem(a)))
164 
165 /**
166  * Append to a Vulkan output array.
167  *
168  * This is a block-based macro. For example:
169  *
170  *    vk_outarray_append(&a, elem) {
171  *       elem->foo = ...;
172  *       elem->bar = ...;
173  *    }
174  *
175  * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
176  * VK_OUTARRAY_MAKE(). The variable `elem` is block-scoped and has type
177  * `elem_t *`.
178  *
179  * The macro unconditionally increments the array's `wanted_len`. If the array
180  * is not full, then the macro also increment its `filled_len` and then
181  * executes the block. When the block is executed, `elem` is non-null and
182  * points to the newly appended element.
183  */
184 #define vk_outarray_append(a, elem)                                            \
185     for (vk_outarray_typeof_elem(a) *elem = vk_outarray_next(a); elem != NULL; \
186          elem = NULL)
187 
__vk_find_struct(void * start,VkStructureType sType)188 static inline void *__vk_find_struct(void *start, VkStructureType sType) {
189     vk_foreach_struct(s, start) {
190         if (s->sType == sType) return s;
191     }
192 
193     return NULL;
194 }
195 
196 template <class T, class H>
vk_find_struct(H * head)197 T *vk_find_struct(H *head) {
198     (void)vk_get_vk_struct_id<H>::id;
199     return static_cast<T *>(__vk_find_struct(static_cast<void *>(head),
200                                              vk_get_vk_struct_id<T>::id));
201 }
202 
203 template <class T, class H>
vk_find_struct(const H * head)204 const T *vk_find_struct(const H *head) {
205     (void)vk_get_vk_struct_id<H>::id;
206     return static_cast<const T *>(
207         __vk_find_struct(const_cast<void *>(static_cast<const void *>(head)),
208                          vk_get_vk_struct_id<T>::id));
209 }
210 
211 uint32_t vk_get_driver_version(void);
212 
213 uint32_t vk_get_version_override(void);
214 
215 #define VK_EXT_OFFSET (1000000000UL)
216 #define VK_ENUM_EXTENSION(__enum) \
217     ((__enum) >= VK_EXT_OFFSET ? ((((__enum)-VK_EXT_OFFSET) / 1000UL) + 1) : 0)
218 #define VK_ENUM_OFFSET(__enum) \
219     ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
220 
221 template <class T>
vk_make_orphan_copy(const T & vk_struct)222 T vk_make_orphan_copy(const T &vk_struct) {
223     T copy = vk_struct;
224     copy.pNext = NULL;
225     return copy;
226 }
227 
228 template <class T>
vk_make_chain_iterator(T * vk_struct)229 vk_struct_chain_iterator vk_make_chain_iterator(T *vk_struct) {
230     vk_get_vk_struct_id<T>::id;
231     vk_struct_chain_iterator result = {
232         reinterpret_cast<vk_struct_common *>(vk_struct)};
233     return result;
234 }
235 
236 template <class T>
vk_append_struct(vk_struct_chain_iterator * i,T * vk_struct)237 void vk_append_struct(vk_struct_chain_iterator *i, T *vk_struct) {
238     vk_get_vk_struct_id<T>::id;
239 
240     vk_struct_common *p = i->value;
241     if (p->pNext) {
242         ::abort();
243     }
244 
245     p->pNext = reinterpret_cast<vk_struct_common *>(vk_struct);
246     vk_struct->pNext = NULL;
247 
248     *i = vk_make_chain_iterator(vk_struct);
249 }
250 
251 #define VK_CHECK(x)                                                      \
252     do {                                                                 \
253         VkResult err = x;                                                \
254         if (err != VK_SUCCESS) {                                         \
255             ::fprintf(stderr, "%s(%u) %s: %s failed, error code = %d\n", \
256                       __FILE__, __LINE__, __FUNCTION__, #x, err);        \
257             ::abort();                                                   \
258         }                                                                \
259     } while (0)
260 
261 namespace vk_util {
262 class CRTPBase {};
263 
264 template <class T, class U = CRTPBase>
265 class FindMemoryType : public U {
266    protected:
findMemoryType(uint32_t typeFilter,VkMemoryPropertyFlags properties)267     std::optional<uint32_t> findMemoryType(
268         uint32_t typeFilter, VkMemoryPropertyFlags properties) const {
269         const T &self = static_cast<const T &>(*this);
270         VkPhysicalDeviceMemoryProperties memProperties;
271         self.m_vk.vkGetPhysicalDeviceMemoryProperties(self.m_vkPhysicalDevice,
272                                                       &memProperties);
273 
274         for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
275             if ((typeFilter & (1 << i)) &&
276                 (memProperties.memoryTypes[i].propertyFlags & properties) ==
277                     properties) {
278                 return i;
279             }
280         }
281         return std::nullopt;
282     }
283 };
284 
285 template <class T, class U = CRTPBase>
286 class RunSingleTimeCommand : public U {
287    protected:
runSingleTimeCommands(VkQueue queue,std::function<void (const VkCommandBuffer & commandBuffer)> f)288     void runSingleTimeCommands(
289         VkQueue queue,
290         std::function<void(const VkCommandBuffer &commandBuffer)> f) const {
291         const T &self = static_cast<const T &>(*this);
292         VkCommandBuffer cmdBuff;
293         VkCommandBufferAllocateInfo cmdBuffAllocInfo = {
294             .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
295             .commandPool = self.m_vkCommandPool,
296             .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
297             .commandBufferCount = 1};
298         VK_CHECK(self.m_vk.vkAllocateCommandBuffers(
299             self.m_vkDevice, &cmdBuffAllocInfo, &cmdBuff));
300         VkCommandBufferBeginInfo beginInfo = {
301             .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
302             .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT};
303         VK_CHECK(self.m_vk.vkBeginCommandBuffer(cmdBuff, &beginInfo));
304         f(cmdBuff);
305         VK_CHECK(self.m_vk.vkEndCommandBuffer(cmdBuff));
306         VkSubmitInfo submitInfo = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
307                                    .commandBufferCount = 1,
308                                    .pCommandBuffers = &cmdBuff};
309         VK_CHECK(
310             self.m_vk.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
311         VK_CHECK(self.m_vk.vkQueueWaitIdle(queue));
312         self.m_vk.vkFreeCommandBuffers(self.m_vkDevice, self.m_vkCommandPool, 1,
313                                        &cmdBuff);
314     }
315 };
316 template <class T, class U = CRTPBase>
317 class RecordImageLayoutTransformCommands : public U {
318    protected:
recordImageLayoutTransformCommands(VkCommandBuffer cmdBuff,VkImage image,VkImageLayout oldLayout,VkImageLayout newLayout)319     void recordImageLayoutTransformCommands(VkCommandBuffer cmdBuff,
320                                             VkImage image,
321                                             VkImageLayout oldLayout,
322                                             VkImageLayout newLayout) const {
323         const T &self = static_cast<const T &>(*this);
324         VkImageMemoryBarrier imageBarrier = {
325             .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
326             .srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
327             .dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
328             .oldLayout = oldLayout,
329             .newLayout = newLayout,
330             .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
331             .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
332             .image = image,
333             .subresourceRange{.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
334                               .baseMipLevel = 0,
335                               .levelCount = 1,
336                               .baseArrayLayer = 0,
337                               .layerCount = 1}};
338         self.m_vk.vkCmdPipelineBarrier(cmdBuff,
339                                        VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
340                                        VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0,
341                                        nullptr, 0, nullptr, 1, &imageBarrier);
342     }
343 };
344 }  // namespace vk_util
345 
346 #endif /* VK_UTIL_H */
347