• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <emmintrin.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f32_expminus__sse2_rr2_p5(size_t n,const float * input,float * output)14 void xnn_math_f32_expminus__sse2_rr2_p5(
15     size_t n,
16     const float* input,
17     float* output)
18 {
19   assert(n % (4 * sizeof(float)) == 0);
20 
21   // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22.
22   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
23   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
24   // Last 7 bits are zeroes
25   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
26   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
27   // Coefficient of polynomial approximation
28   //   exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
29   // on [-log(2)/2, log(2)/2]
30   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
31   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
32   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
33   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
34   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
35   // The smallest x for which expf(x) is normalized.
36   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
37 
38   for (; n != 0; n -= 4 * sizeof(float)) {
39     const __m128 vx = _mm_loadu_ps(input);
40 
41     // Compute reduced argument n := round(x / log(2)).
42     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
43     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
44     // certain bounds (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because
45     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very
46     // end of the algorithm.
47     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
48 
49     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
50     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
51     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
52 
53     // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number.
54     vn = _mm_sub_ps(vn, vmagic_bias);
55 
56     // Compute reduced argument t := x - n * log(2).
57     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
58     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
59     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
60 
61     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]:
62     //   P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p
63     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
64     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
65     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
66     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
67 
68     // Reconstruct the exp(x) value:
69     //   exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
70     //          = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
71     //          = s + (t * s) * p
72     vt = _mm_mul_ps(vt, vs);
73     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
74 
75     // For inputs below denormal cutoff, replace output with +0.0f.
76     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
77     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
78     _mm_storeu_ps(output, vf);
79 
80     input += 4;
81     output += 4;
82   }
83 }
84