1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 /// form should be in the preheader, whereas the while form should be in the
14 /// preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
45 /// VPR.P0 &= Value
46 /// else
47 /// VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "MVETailPredUtils.h"
60 #include "Thumb2InstrInfo.h"
61 #include "llvm/ADT/SetOperations.h"
62 #include "llvm/ADT/SmallSet.h"
63 #include "llvm/CodeGen/LivePhysRegs.h"
64 #include "llvm/CodeGen/MachineFunctionPass.h"
65 #include "llvm/CodeGen/MachineLoopInfo.h"
66 #include "llvm/CodeGen/MachineLoopUtils.h"
67 #include "llvm/CodeGen/MachineRegisterInfo.h"
68 #include "llvm/CodeGen/Passes.h"
69 #include "llvm/CodeGen/ReachingDefAnalysis.h"
70 #include "llvm/MC/MCInstrDesc.h"
71
72 using namespace llvm;
73
74 #define DEBUG_TYPE "arm-low-overhead-loops"
75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
76
77 static cl::opt<bool>
78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
79 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
80 cl::init(false));
81
isVectorPredicated(MachineInstr * MI)82 static bool isVectorPredicated(MachineInstr *MI) {
83 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
84 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
85 }
86
isVectorPredicate(MachineInstr * MI)87 static bool isVectorPredicate(MachineInstr *MI) {
88 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
89 }
90
hasVPRUse(MachineInstr & MI)91 static bool hasVPRUse(MachineInstr &MI) {
92 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1;
93 }
94
isDomainMVE(MachineInstr * MI)95 static bool isDomainMVE(MachineInstr *MI) {
96 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
97 return Domain == ARMII::DomainMVE;
98 }
99
shouldInspect(MachineInstr & MI)100 static bool shouldInspect(MachineInstr &MI) {
101 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
102 }
103
isDo(MachineInstr * MI)104 static bool isDo(MachineInstr *MI) {
105 return MI->getOpcode() != ARM::t2WhileLoopStart;
106 }
107
108 namespace {
109
110 using InstSet = SmallPtrSetImpl<MachineInstr *>;
111
112 class PostOrderLoopTraversal {
113 MachineLoop &ML;
114 MachineLoopInfo &MLI;
115 SmallPtrSet<MachineBasicBlock*, 4> Visited;
116 SmallVector<MachineBasicBlock*, 4> Order;
117
118 public:
PostOrderLoopTraversal(MachineLoop & ML,MachineLoopInfo & MLI)119 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
120 : ML(ML), MLI(MLI) { }
121
getOrder() const122 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
123 return Order;
124 }
125
126 // Visit all the blocks within the loop, as well as exit blocks and any
127 // blocks properly dominating the header.
ProcessLoop()128 void ProcessLoop() {
129 std::function<void(MachineBasicBlock*)> Search = [this, &Search]
130 (MachineBasicBlock *MBB) -> void {
131 if (Visited.count(MBB))
132 return;
133
134 Visited.insert(MBB);
135 for (auto *Succ : MBB->successors()) {
136 if (!ML.contains(Succ))
137 continue;
138 Search(Succ);
139 }
140 Order.push_back(MBB);
141 };
142
143 // Insert exit blocks.
144 SmallVector<MachineBasicBlock*, 2> ExitBlocks;
145 ML.getExitBlocks(ExitBlocks);
146 for (auto *MBB : ExitBlocks)
147 Order.push_back(MBB);
148
149 // Then add the loop body.
150 Search(ML.getHeader());
151
152 // Then try the preheader and its predecessors.
153 std::function<void(MachineBasicBlock*)> GetPredecessor =
154 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
155 Order.push_back(MBB);
156 if (MBB->pred_size() == 1)
157 GetPredecessor(*MBB->pred_begin());
158 };
159
160 if (auto *Preheader = ML.getLoopPreheader())
161 GetPredecessor(Preheader);
162 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
163 GetPredecessor(Preheader);
164 }
165 };
166
167 struct PredicatedMI {
168 MachineInstr *MI = nullptr;
169 SetVector<MachineInstr*> Predicates;
170
171 public:
PredicatedMI__anone84e0e190111::PredicatedMI172 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
173 assert(I && "Instruction must not be null!");
174 Predicates.insert(Preds.begin(), Preds.end());
175 }
176 };
177
178 // Represent the current state of the VPR and hold all instances which
179 // represent a VPT block, which is a list of instructions that begins with a
180 // VPT/VPST and has a maximum of four proceeding instructions. All
181 // instructions within the block are predicated upon the vpr and we allow
182 // instructions to define the vpr within in the block too.
183 class VPTState {
184 friend struct LowOverheadLoop;
185
186 SmallVector<MachineInstr *, 4> Insts;
187
188 static SmallVector<VPTState, 4> Blocks;
189 static SetVector<MachineInstr *> CurrentPredicates;
190 static std::map<MachineInstr *,
191 std::unique_ptr<PredicatedMI>> PredicatedInsts;
192
CreateVPTBlock(MachineInstr * MI)193 static void CreateVPTBlock(MachineInstr *MI) {
194 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
195 && "Can't begin VPT without predicate");
196 Blocks.emplace_back(MI);
197 // The execution of MI is predicated upon the current set of instructions
198 // that are AND'ed together to form the VPR predicate value. In the case
199 // that MI is a VPT, CurrentPredicates will also just be MI.
200 PredicatedInsts.emplace(
201 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
202 }
203
reset()204 static void reset() {
205 Blocks.clear();
206 PredicatedInsts.clear();
207 CurrentPredicates.clear();
208 }
209
addInst(MachineInstr * MI)210 static void addInst(MachineInstr *MI) {
211 Blocks.back().insert(MI);
212 PredicatedInsts.emplace(
213 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
214 }
215
addPredicate(MachineInstr * MI)216 static void addPredicate(MachineInstr *MI) {
217 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
218 CurrentPredicates.insert(MI);
219 }
220
resetPredicate(MachineInstr * MI)221 static void resetPredicate(MachineInstr *MI) {
222 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
223 CurrentPredicates.clear();
224 CurrentPredicates.insert(MI);
225 }
226
227 public:
228 // Have we found an instruction within the block which defines the vpr? If
229 // so, not all the instructions in the block will have the same predicate.
hasUniformPredicate(VPTState & Block)230 static bool hasUniformPredicate(VPTState &Block) {
231 return getDivergent(Block) == nullptr;
232 }
233
234 // If it exists, return the first internal instruction which modifies the
235 // VPR.
getDivergent(VPTState & Block)236 static MachineInstr *getDivergent(VPTState &Block) {
237 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
238 for (unsigned i = 1; i < Insts.size(); ++i) {
239 MachineInstr *Next = Insts[i];
240 if (isVectorPredicate(Next))
241 return Next; // Found an instruction altering the vpr.
242 }
243 return nullptr;
244 }
245
246 // Return whether the given instruction is predicated upon a VCTP.
isPredicatedOnVCTP(MachineInstr * MI,bool Exclusive=false)247 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
248 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
249 if (Exclusive && Predicates.size() != 1)
250 return false;
251 for (auto *PredMI : Predicates)
252 if (isVCTP(PredMI))
253 return true;
254 return false;
255 }
256
257 // Is the VPST, controlling the block entry, predicated upon a VCTP.
isEntryPredicatedOnVCTP(VPTState & Block,bool Exclusive=false)258 static bool isEntryPredicatedOnVCTP(VPTState &Block,
259 bool Exclusive = false) {
260 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
261 return isPredicatedOnVCTP(Insts.front(), Exclusive);
262 }
263
264 // If this block begins with a VPT, we can check whether it's using
265 // at least one predicated input(s), as well as possible loop invariant
266 // which would result in it being implicitly predicated.
hasImplicitlyValidVPT(VPTState & Block,ReachingDefAnalysis & RDA)267 static bool hasImplicitlyValidVPT(VPTState &Block,
268 ReachingDefAnalysis &RDA) {
269 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
270 MachineInstr *VPT = Insts.front();
271 assert(isVPTOpcode(VPT->getOpcode()) &&
272 "Expected VPT block to begin with VPT/VPST");
273
274 if (VPT->getOpcode() == ARM::MVE_VPST)
275 return false;
276
277 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
278 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
279 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
280 };
281
282 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
283 MachineOperand &MO = MI->getOperand(Idx);
284 if (!MO.isReg() || !MO.getReg())
285 return true;
286
287 SmallPtrSet<MachineInstr *, 2> Defs;
288 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
289 if (Defs.empty())
290 return true;
291
292 for (auto *Def : Defs)
293 if (Def->getParent() == VPT->getParent())
294 return false;
295 return true;
296 };
297
298 // Check that at least one of the operands is directly predicated on a
299 // vctp and allow an invariant value too.
300 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
301 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
302 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
303 }
304
isValid(ReachingDefAnalysis & RDA)305 static bool isValid(ReachingDefAnalysis &RDA) {
306 // All predication within the loop should be based on vctp. If the block
307 // isn't predicated on entry, check whether the vctp is within the block
308 // and that all other instructions are then predicated on it.
309 for (auto &Block : Blocks) {
310 if (isEntryPredicatedOnVCTP(Block, false) ||
311 hasImplicitlyValidVPT(Block, RDA))
312 continue;
313
314 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
315 for (auto *MI : Insts) {
316 // Check that any internal VCTPs are 'Then' predicated.
317 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
318 return false;
319 // Skip other instructions that build up the predicate.
320 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
321 continue;
322 // Check that any other instructions are predicated upon a vctp.
323 // TODO: We could infer when VPTs are implicitly predicated on the
324 // vctp (when the operands are predicated).
325 if (!isPredicatedOnVCTP(MI)) {
326 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
327 return false;
328 }
329 }
330 }
331 return true;
332 }
333
VPTState(MachineInstr * MI)334 VPTState(MachineInstr *MI) { Insts.push_back(MI); }
335
insert(MachineInstr * MI)336 void insert(MachineInstr *MI) {
337 Insts.push_back(MI);
338 // VPT/VPST + 4 predicated instructions.
339 assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
340 }
341
containsVCTP() const342 bool containsVCTP() const {
343 for (auto *MI : Insts)
344 if (isVCTP(MI))
345 return true;
346 return false;
347 }
348
size() const349 unsigned size() const { return Insts.size(); }
getInsts()350 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
351 };
352
353 struct LowOverheadLoop {
354
355 MachineLoop &ML;
356 MachineBasicBlock *Preheader = nullptr;
357 MachineLoopInfo &MLI;
358 ReachingDefAnalysis &RDA;
359 const TargetRegisterInfo &TRI;
360 const ARMBaseInstrInfo &TII;
361 MachineFunction *MF = nullptr;
362 MachineBasicBlock::iterator StartInsertPt;
363 MachineBasicBlock *StartInsertBB = nullptr;
364 MachineInstr *Start = nullptr;
365 MachineInstr *Dec = nullptr;
366 MachineInstr *End = nullptr;
367 MachineOperand TPNumElements;
368 SmallVector<MachineInstr*, 4> VCTPs;
369 SmallPtrSet<MachineInstr*, 4> ToRemove;
370 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
371 bool Revert = false;
372 bool CannotTailPredicate = false;
373
LowOverheadLoop__anone84e0e190111::LowOverheadLoop374 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
375 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
376 const ARMBaseInstrInfo &TII)
377 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
378 TPNumElements(MachineOperand::CreateImm(0)) {
379 MF = ML.getHeader()->getParent();
380 if (auto *MBB = ML.getLoopPreheader())
381 Preheader = MBB;
382 else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
383 Preheader = MBB;
384 VPTState::reset();
385 }
386
387 // If this is an MVE instruction, check that we know how to use tail
388 // predication with it. Record VPT blocks and return whether the
389 // instruction is valid for tail predication.
390 bool ValidateMVEInst(MachineInstr *MI);
391
AnalyseMVEInst__anone84e0e190111::LowOverheadLoop392 void AnalyseMVEInst(MachineInstr *MI) {
393 CannotTailPredicate = !ValidateMVEInst(MI);
394 }
395
IsTailPredicationLegal__anone84e0e190111::LowOverheadLoop396 bool IsTailPredicationLegal() const {
397 // For now, let's keep things really simple and only support a single
398 // block for tail predication.
399 return !Revert && FoundAllComponents() && !VCTPs.empty() &&
400 !CannotTailPredicate && ML.getNumBlocks() == 1;
401 }
402
403 // Given that MI is a VCTP, check that is equivalent to any other VCTPs
404 // found.
405 bool AddVCTP(MachineInstr *MI);
406
407 // Check that the predication in the loop will be equivalent once we
408 // perform the conversion. Also ensure that we can provide the number
409 // of elements to the loop start instruction.
410 bool ValidateTailPredicate();
411
412 // Check that any values available outside of the loop will be the same
413 // after tail predication conversion.
414 bool ValidateLiveOuts();
415
416 // Is it safe to define LR with DLS/WLS?
417 // LR can be defined if it is the operand to start, because it's the same
418 // value, or if it's going to be equivalent to the operand to Start.
419 MachineInstr *isSafeToDefineLR();
420
421 // Check the branch targets are within range and we satisfy our
422 // restrictions.
423 void Validate(ARMBasicBlockUtils *BBUtils);
424
FoundAllComponents__anone84e0e190111::LowOverheadLoop425 bool FoundAllComponents() const {
426 return Start && Dec && End;
427 }
428
getVPTBlocks__anone84e0e190111::LowOverheadLoop429 SmallVectorImpl<VPTState> &getVPTBlocks() {
430 return VPTState::Blocks;
431 }
432
433 // Return the operand for the loop start instruction. This will be the loop
434 // iteration count, or the number of elements if we're tail predicating.
getLoopStartOperand__anone84e0e190111::LowOverheadLoop435 MachineOperand &getLoopStartOperand() {
436 if (IsTailPredicationLegal())
437 return TPNumElements;
438 return isDo(Start) ? Start->getOperand(1) : Start->getOperand(0);
439 }
440
getStartOpcode__anone84e0e190111::LowOverheadLoop441 unsigned getStartOpcode() const {
442 bool IsDo = isDo(Start);
443 if (!IsTailPredicationLegal())
444 return IsDo ? ARM::t2DLS : ARM::t2WLS;
445
446 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
447 }
448
dump__anone84e0e190111::LowOverheadLoop449 void dump() const {
450 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
451 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
452 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
453 if (!VCTPs.empty()) {
454 dbgs() << "ARM Loops: Found VCTP(s):\n";
455 for (auto *MI : VCTPs)
456 dbgs() << " - " << *MI;
457 }
458 if (!FoundAllComponents())
459 dbgs() << "ARM Loops: Not a low-overhead loop.\n";
460 else if (!(Start && Dec && End))
461 dbgs() << "ARM Loops: Failed to find all loop components.\n";
462 }
463 };
464
465 class ARMLowOverheadLoops : public MachineFunctionPass {
466 MachineFunction *MF = nullptr;
467 MachineLoopInfo *MLI = nullptr;
468 ReachingDefAnalysis *RDA = nullptr;
469 const ARMBaseInstrInfo *TII = nullptr;
470 MachineRegisterInfo *MRI = nullptr;
471 const TargetRegisterInfo *TRI = nullptr;
472 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
473
474 public:
475 static char ID;
476
ARMLowOverheadLoops()477 ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
478
getAnalysisUsage(AnalysisUsage & AU) const479 void getAnalysisUsage(AnalysisUsage &AU) const override {
480 AU.setPreservesCFG();
481 AU.addRequired<MachineLoopInfo>();
482 AU.addRequired<ReachingDefAnalysis>();
483 MachineFunctionPass::getAnalysisUsage(AU);
484 }
485
486 bool runOnMachineFunction(MachineFunction &MF) override;
487
getRequiredProperties() const488 MachineFunctionProperties getRequiredProperties() const override {
489 return MachineFunctionProperties().set(
490 MachineFunctionProperties::Property::NoVRegs).set(
491 MachineFunctionProperties::Property::TracksLiveness);
492 }
493
getPassName() const494 StringRef getPassName() const override {
495 return ARM_LOW_OVERHEAD_LOOPS_NAME;
496 }
497
498 private:
499 bool ProcessLoop(MachineLoop *ML);
500
501 bool RevertNonLoops();
502
503 void RevertWhile(MachineInstr *MI) const;
504 void RevertDo(MachineInstr *MI) const;
505
506 bool RevertLoopDec(MachineInstr *MI) const;
507
508 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
509
510 void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
511
512 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
513
514 void Expand(LowOverheadLoop &LoLoop);
515
516 void IterationCountDCE(LowOverheadLoop &LoLoop);
517 };
518 }
519
520 char ARMLowOverheadLoops::ID = 0;
521
522 SmallVector<VPTState, 4> VPTState::Blocks;
523 SetVector<MachineInstr *> VPTState::CurrentPredicates;
524 std::map<MachineInstr *,
525 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
526
INITIALIZE_PASS(ARMLowOverheadLoops,DEBUG_TYPE,ARM_LOW_OVERHEAD_LOOPS_NAME,false,false)527 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
528 false, false)
529
530 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
531 InstSet &ToRemove, InstSet &Ignore) {
532
533 // Check that we can remove all of Killed without having to modify any IT
534 // blocks.
535 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
536 // Collect the dead code and the MBBs in which they reside.
537 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
538 for (auto *Dead : Killed)
539 BasicBlocks.insert(Dead->getParent());
540
541 // Collect IT blocks in all affected basic blocks.
542 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
543 for (auto *MBB : BasicBlocks) {
544 for (auto &IT : *MBB) {
545 if (IT.getOpcode() != ARM::t2IT)
546 continue;
547 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
548 ITBlocks[&IT]);
549 }
550 }
551
552 // If we're removing all of the instructions within an IT block, then
553 // also remove the IT instruction.
554 SmallPtrSet<MachineInstr *, 2> ModifiedITs;
555 SmallPtrSet<MachineInstr *, 2> RemoveITs;
556 for (auto *Dead : Killed) {
557 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
558 MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
559 RemoveITs.insert(IT);
560 auto &CurrentBlock = ITBlocks[IT];
561 CurrentBlock.erase(Dead);
562 if (CurrentBlock.empty())
563 ModifiedITs.erase(IT);
564 else
565 ModifiedITs.insert(IT);
566 }
567 }
568 if (!ModifiedITs.empty())
569 return false;
570 Killed.insert(RemoveITs.begin(), RemoveITs.end());
571 return true;
572 };
573
574 SmallPtrSet<MachineInstr *, 2> Uses;
575 if (!RDA.isSafeToRemove(MI, Uses, Ignore))
576 return false;
577
578 if (WontCorruptITs(Uses, RDA)) {
579 ToRemove.insert(Uses.begin(), Uses.end());
580 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
581 << " - can also remove:\n";
582 for (auto *Use : Uses)
583 dbgs() << " - " << *Use);
584
585 SmallPtrSet<MachineInstr*, 4> Killed;
586 RDA.collectKilledOperands(MI, Killed);
587 if (WontCorruptITs(Killed, RDA)) {
588 ToRemove.insert(Killed.begin(), Killed.end());
589 LLVM_DEBUG(for (auto *Dead : Killed)
590 dbgs() << " - " << *Dead);
591 }
592 return true;
593 }
594 return false;
595 }
596
ValidateTailPredicate()597 bool LowOverheadLoop::ValidateTailPredicate() {
598 if (!IsTailPredicationLegal()) {
599 LLVM_DEBUG(if (VCTPs.empty())
600 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
601 dbgs() << "ARM Loops: Tail-predication is not valid.\n");
602 return false;
603 }
604
605 assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
606 assert(ML.getBlocks().size() == 1 &&
607 "Shouldn't be processing a loop with more than one block");
608
609 if (DisableTailPredication) {
610 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
611 return false;
612 }
613
614 if (!VPTState::isValid(RDA)) {
615 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
616 return false;
617 }
618
619 if (!ValidateLiveOuts()) {
620 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
621 return false;
622 }
623
624 // Check that creating a [W|D]LSTP, which will define LR with an element
625 // count instead of iteration count, won't affect any other instructions
626 // than the LoopStart and LoopDec.
627 // TODO: We should try to insert the [W|D]LSTP after any of the other uses.
628 Register StartReg = isDo(Start) ? Start->getOperand(1).getReg()
629 : Start->getOperand(0).getReg();
630 if (StartInsertPt == Start && StartReg == ARM::LR) {
631 if (auto *IterCount = RDA.getMIOperand(Start, isDo(Start) ? 1 : 0)) {
632 SmallPtrSet<MachineInstr *, 2> Uses;
633 RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses);
634 for (auto *Use : Uses) {
635 if (Use != Start && Use != Dec) {
636 LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
637 return false;
638 }
639 }
640 }
641 }
642
643 // For tail predication, we need to provide the number of elements, instead
644 // of the iteration count, to the loop start instruction. The number of
645 // elements is provided to the vctp instruction, so we need to check that
646 // we can use this register at InsertPt.
647 MachineInstr *VCTP = VCTPs.back();
648 if (Start->getOpcode() == ARM::t2DoLoopStartTP) {
649 TPNumElements = Start->getOperand(2);
650 StartInsertPt = Start;
651 StartInsertBB = Start->getParent();
652 } else {
653 TPNumElements = VCTP->getOperand(1);
654 MCRegister NumElements = TPNumElements.getReg().asMCReg();
655
656 // If the register is defined within loop, then we can't perform TP.
657 // TODO: Check whether this is just a mov of a register that would be
658 // available.
659 if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
660 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
661 return false;
662 }
663
664 // The element count register maybe defined after InsertPt, in which case we
665 // need to try to move either InsertPt or the def so that the [w|d]lstp can
666 // use the value.
667
668 if (StartInsertPt != StartInsertBB->end() &&
669 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
670 if (auto *ElemDef =
671 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
672 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
673 ElemDef->removeFromParent();
674 StartInsertBB->insert(StartInsertPt, ElemDef);
675 LLVM_DEBUG(dbgs()
676 << "ARM Loops: Moved element count def: " << *ElemDef);
677 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
678 StartInsertPt->removeFromParent();
679 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
680 &*StartInsertPt);
681 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
682 } else {
683 // If we fail to move an instruction and the element count is provided
684 // by a mov, use the mov operand if it will have the same value at the
685 // insertion point
686 MachineOperand Operand = ElemDef->getOperand(1);
687 if (isMovRegOpcode(ElemDef->getOpcode()) &&
688 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
689 RDA.getUniqueReachingMIDef(&*StartInsertPt,
690 Operand.getReg().asMCReg())) {
691 TPNumElements = Operand;
692 NumElements = TPNumElements.getReg();
693 } else {
694 LLVM_DEBUG(dbgs()
695 << "ARM Loops: Unable to move element count to loop "
696 << "start instruction.\n");
697 return false;
698 }
699 }
700 }
701 }
702
703 // Especially in the case of while loops, InsertBB may not be the
704 // preheader, so we need to check that the register isn't redefined
705 // before entering the loop.
706 auto CannotProvideElements = [this](MachineBasicBlock *MBB,
707 MCRegister NumElements) {
708 if (MBB->empty())
709 return false;
710 // NumElements is redefined in this block.
711 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
712 return true;
713
714 // Don't continue searching up through multiple predecessors.
715 if (MBB->pred_size() > 1)
716 return true;
717
718 return false;
719 };
720
721 // Search backwards for a def, until we get to InsertBB.
722 MachineBasicBlock *MBB = Preheader;
723 while (MBB && MBB != StartInsertBB) {
724 if (CannotProvideElements(MBB, NumElements)) {
725 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
726 return false;
727 }
728 MBB = *MBB->pred_begin();
729 }
730 }
731
732 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
733 // world the [w|d]lstp instruction would be last instruction in the preheader
734 // and so it would only affect instructions within the loop body. But due to
735 // scheduling, and/or the logic in this pass (above), the insertion point can
736 // be moved earlier. So if the Loop Start isn't the last instruction in the
737 // preheader, and if the initial element count is smaller than the vector
738 // width, the Loop Start instruction will immediately generate one or more
739 // false lane mask which can, incorrectly, affect the proceeding MVE
740 // instructions in the preheader.
741 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
742 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
743 return false;
744 }
745
746 // Check that the value change of the element count is what we expect and
747 // that the predication will be equivalent. For this we need:
748 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
749 // and we can also allow register copies within the chain too.
750 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
751 return -getAddSubImmediate(*MI) == ExpectedVecWidth;
752 };
753
754 MachineBasicBlock *MBB = VCTP->getParent();
755 // Remove modifications to the element count since they have no purpose in a
756 // tail predicated loop. Explicitly refer to the vctp operand no matter which
757 // register NumElements has been assigned to, since that is what the
758 // modifications will be using
759 if (auto *Def = RDA.getUniqueReachingMIDef(
760 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
761 SmallPtrSet<MachineInstr*, 2> ElementChain;
762 SmallPtrSet<MachineInstr*, 2> Ignore;
763 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
764
765 Ignore.insert(VCTPs.begin(), VCTPs.end());
766
767 if (TryRemove(Def, RDA, ElementChain, Ignore)) {
768 bool FoundSub = false;
769
770 for (auto *MI : ElementChain) {
771 if (isMovRegOpcode(MI->getOpcode()))
772 continue;
773
774 if (isSubImmOpcode(MI->getOpcode())) {
775 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
776 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
777 " count: " << *MI);
778 return false;
779 }
780 FoundSub = true;
781 } else {
782 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
783 " count: " << *MI);
784 return false;
785 }
786 }
787 ToRemove.insert(ElementChain.begin(), ElementChain.end());
788 }
789 }
790 return true;
791 }
792
isRegInClass(const MachineOperand & MO,const TargetRegisterClass * Class)793 static bool isRegInClass(const MachineOperand &MO,
794 const TargetRegisterClass *Class) {
795 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
796 }
797
798 // MVE 'narrowing' operate on half a lane, reading from half and writing
799 // to half, which are referred to has the top and bottom half. The other
800 // half retains its previous value.
retainsPreviousHalfElement(const MachineInstr & MI)801 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
802 const MCInstrDesc &MCID = MI.getDesc();
803 uint64_t Flags = MCID.TSFlags;
804 return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
805 }
806
807 // Some MVE instructions read from the top/bottom halves of their operand(s)
808 // and generate a vector result with result elements that are double the
809 // width of the input.
producesDoubleWidthResult(const MachineInstr & MI)810 static bool producesDoubleWidthResult(const MachineInstr &MI) {
811 const MCInstrDesc &MCID = MI.getDesc();
812 uint64_t Flags = MCID.TSFlags;
813 return (Flags & ARMII::DoubleWidthResult) != 0;
814 }
815
isHorizontalReduction(const MachineInstr & MI)816 static bool isHorizontalReduction(const MachineInstr &MI) {
817 const MCInstrDesc &MCID = MI.getDesc();
818 uint64_t Flags = MCID.TSFlags;
819 return (Flags & ARMII::HorizontalReduction) != 0;
820 }
821
822 // Can this instruction generate a non-zero result when given only zeroed
823 // operands? This allows us to know that, given operands with false bytes
824 // zeroed by masked loads, that the result will also contain zeros in those
825 // bytes.
canGenerateNonZeros(const MachineInstr & MI)826 static bool canGenerateNonZeros(const MachineInstr &MI) {
827
828 // Check for instructions which can write into a larger element size,
829 // possibly writing into a previous zero'd lane.
830 if (producesDoubleWidthResult(MI))
831 return true;
832
833 switch (MI.getOpcode()) {
834 default:
835 break;
836 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
837 // fp16 -> fp32 vector conversions.
838 // Instructions that perform a NOT will generate 1s from 0s.
839 case ARM::MVE_VMVN:
840 case ARM::MVE_VORN:
841 // Count leading zeros will do just that!
842 case ARM::MVE_VCLZs8:
843 case ARM::MVE_VCLZs16:
844 case ARM::MVE_VCLZs32:
845 return true;
846 }
847 return false;
848 }
849
850 // Look at its register uses to see if it only can only receive zeros
851 // into its false lanes which would then produce zeros. Also check that
852 // the output register is also defined by an FalseLanesZero instruction
853 // so that if tail-predication happens, the lanes that aren't updated will
854 // still be zeros.
producesFalseLanesZero(MachineInstr & MI,const TargetRegisterClass * QPRs,const ReachingDefAnalysis & RDA,InstSet & FalseLanesZero)855 static bool producesFalseLanesZero(MachineInstr &MI,
856 const TargetRegisterClass *QPRs,
857 const ReachingDefAnalysis &RDA,
858 InstSet &FalseLanesZero) {
859 if (canGenerateNonZeros(MI))
860 return false;
861
862 bool isPredicated = isVectorPredicated(&MI);
863 // Predicated loads will write zeros to the falsely predicated bytes of the
864 // destination register.
865 if (MI.mayLoad())
866 return isPredicated;
867
868 auto IsZeroInit = [](MachineInstr *Def) {
869 return !isVectorPredicated(Def) &&
870 Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
871 Def->getOperand(1).getImm() == 0;
872 };
873
874 bool AllowScalars = isHorizontalReduction(MI);
875 for (auto &MO : MI.operands()) {
876 if (!MO.isReg() || !MO.getReg())
877 continue;
878 if (!isRegInClass(MO, QPRs) && AllowScalars)
879 continue;
880
881 // Check that this instruction will produce zeros in its false lanes:
882 // - If it only consumes false lanes zero or constant 0 (vmov #0)
883 // - If it's predicated, it only matters that it's def register already has
884 // false lane zeros, so we can ignore the uses.
885 SmallPtrSet<MachineInstr *, 2> Defs;
886 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
887 for (auto *Def : Defs) {
888 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
889 continue;
890 if (MO.isUse() && isPredicated)
891 continue;
892 return false;
893 }
894 }
895 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
896 return true;
897 }
898
ValidateLiveOuts()899 bool LowOverheadLoop::ValidateLiveOuts() {
900 // We want to find out if the tail-predicated version of this loop will
901 // produce the same values as the loop in its original form. For this to
902 // be true, the newly inserted implicit predication must not change the
903 // the (observable) results.
904 // We're doing this because many instructions in the loop will not be
905 // predicated and so the conversion from VPT predication to tail-predication
906 // can result in different values being produced; due to the tail-predication
907 // preventing many instructions from updating their falsely predicated
908 // lanes. This analysis assumes that all the instructions perform lane-wise
909 // operations and don't perform any exchanges.
910 // A masked load, whether through VPT or tail predication, will write zeros
911 // to any of the falsely predicated bytes. So, from the loads, we know that
912 // the false lanes are zeroed and here we're trying to track that those false
913 // lanes remain zero, or where they change, the differences are masked away
914 // by their user(s).
915 // All MVE stores have to be predicated, so we know that any predicate load
916 // operands, or stored results are equivalent already. Other explicitly
917 // predicated instructions will perform the same operation in the original
918 // loop and the tail-predicated form too. Because of this, we can insert
919 // loads, stores and other predicated instructions into our Predicated
920 // set and build from there.
921 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
922 SetVector<MachineInstr *> FalseLanesUnknown;
923 SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
924 SmallPtrSet<MachineInstr *, 4> Predicated;
925 MachineBasicBlock *Header = ML.getHeader();
926
927 for (auto &MI : *Header) {
928 if (!shouldInspect(MI))
929 continue;
930
931 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
932 continue;
933
934 bool isPredicated = isVectorPredicated(&MI);
935 bool retainsOrReduces =
936 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
937
938 if (isPredicated)
939 Predicated.insert(&MI);
940 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
941 FalseLanesZero.insert(&MI);
942 else if (MI.getNumDefs() == 0)
943 continue;
944 else if (!isPredicated && retainsOrReduces)
945 return false;
946 else if (!isPredicated)
947 FalseLanesUnknown.insert(&MI);
948 }
949
950 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
951 SmallPtrSetImpl<MachineInstr *> &Predicated) {
952 SmallPtrSet<MachineInstr *, 2> Uses;
953 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
954 for (auto *Use : Uses) {
955 if (Use != MI && !Predicated.count(Use))
956 return false;
957 }
958 return true;
959 };
960
961 // Visit the unknowns in reverse so that we can start at the values being
962 // stored and then we can work towards the leaves, hopefully adding more
963 // instructions to Predicated. Successfully terminating the loop means that
964 // all the unknown values have to found to be masked by predicated user(s).
965 // For any unpredicated values, we store them in NonPredicated so that we
966 // can later check whether these form a reduction.
967 SmallPtrSet<MachineInstr*, 2> NonPredicated;
968 for (auto *MI : reverse(FalseLanesUnknown)) {
969 for (auto &MO : MI->operands()) {
970 if (!isRegInClass(MO, QPRs) || !MO.isDef())
971 continue;
972 if (!HasPredicatedUsers(MI, MO, Predicated)) {
973 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
974 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
975 NonPredicated.insert(MI);
976 break;
977 }
978 }
979 // Any unknown false lanes have been masked away by the user(s).
980 if (!NonPredicated.contains(MI))
981 Predicated.insert(MI);
982 }
983
984 SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
985 SmallVector<MachineBasicBlock *, 2> ExitBlocks;
986 ML.getExitBlocks(ExitBlocks);
987 assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
988 assert(ExitBlocks.size() == 1 && "Expected a single exit block");
989 MachineBasicBlock *ExitBB = ExitBlocks.front();
990 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
991 // TODO: Instead of blocking predication, we could move the vctp to the exit
992 // block and calculate it's operand there in or the preheader.
993 if (RegMask.PhysReg == ARM::VPR)
994 return false;
995 // Check Q-regs that are live in the exit blocks. We don't collect scalars
996 // because they won't be affected by lane predication.
997 if (QPRs->contains(RegMask.PhysReg))
998 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
999 LiveOutMIs.insert(MI);
1000 }
1001
1002 // We've already validated that any VPT predication within the loop will be
1003 // equivalent when we perform the predication transformation; so we know that
1004 // any VPT predicated instruction is predicated upon VCTP. Any live-out
1005 // instruction needs to be predicated, so check this here. The instructions
1006 // in NonPredicated have been found to be a reduction that we can ensure its
1007 // legality.
1008 for (auto *MI : LiveOutMIs) {
1009 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1010 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
1011 return false;
1012 }
1013 }
1014
1015 return true;
1016 }
1017
Validate(ARMBasicBlockUtils * BBUtils)1018 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1019 if (Revert)
1020 return;
1021
1022 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1023 // can only jump back.
1024 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1025 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1026 assert(End->getOperand(1).isMBB() &&
1027 "Expected LoopEnd to target basic block!");
1028
1029 // TODO Maybe there's cases where the target doesn't have to be the header,
1030 // but for now be safe and revert.
1031 if (End->getOperand(1).getMBB() != ML.getHeader()) {
1032 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1033 return false;
1034 }
1035
1036 // The WLS and LE instructions have 12-bits for the label offset. WLS
1037 // requires a positive offset, while LE uses negative.
1038 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1039 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1040 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1041 return false;
1042 }
1043
1044 if (Start->getOpcode() == ARM::t2WhileLoopStart &&
1045 (BBUtils->getOffsetOf(Start) >
1046 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
1047 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
1048 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1049 return false;
1050 }
1051 return true;
1052 };
1053
1054 // Find a suitable position to insert the loop start instruction. It needs to
1055 // be able to safely define LR.
1056 auto FindStartInsertionPoint = [](MachineInstr *Start, MachineInstr *Dec,
1057 MachineBasicBlock::iterator &InsertPt,
1058 MachineBasicBlock *&InsertBB,
1059 ReachingDefAnalysis &RDA,
1060 InstSet &ToRemove) {
1061 // For a t2DoLoopStart it is always valid to use the start insertion point.
1062 // For WLS we can define LR if LR already contains the same value.
1063 if (isDo(Start) || Start->getOperand(0).getReg() == ARM::LR) {
1064 InsertPt = MachineBasicBlock::iterator(Start);
1065 InsertBB = Start->getParent();
1066 return true;
1067 }
1068
1069 // We've found no suitable LR def and Start doesn't use LR directly. Can we
1070 // just define LR anyway?
1071 if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR)))
1072 return false;
1073
1074 InsertPt = MachineBasicBlock::iterator(Start);
1075 InsertBB = Start->getParent();
1076 return true;
1077 };
1078
1079 if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA,
1080 ToRemove)) {
1081 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1082 Revert = true;
1083 return;
1084 }
1085 LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end())
1086 dbgs() << "ARM Loops: Will insert LoopStart at end of block\n";
1087 else
1088 dbgs() << "ARM Loops: Will insert LoopStart at "
1089 << *StartInsertPt
1090 );
1091
1092 Revert = !ValidateRanges(Start, End, BBUtils, ML);
1093 CannotTailPredicate = !ValidateTailPredicate();
1094 }
1095
AddVCTP(MachineInstr * MI)1096 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1097 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1098 if (VCTPs.empty()) {
1099 VCTPs.push_back(MI);
1100 return true;
1101 }
1102
1103 // If we find another VCTP, check whether it uses the same value as the main VCTP.
1104 // If it does, store it in the VCTPs set, else refuse it.
1105 MachineInstr *Prev = VCTPs.back();
1106 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1107 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1108 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1109 "definition from the main VCTP");
1110 return false;
1111 }
1112 VCTPs.push_back(MI);
1113 return true;
1114 }
1115
ValidateMVEInst(MachineInstr * MI)1116 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1117 if (CannotTailPredicate)
1118 return false;
1119
1120 if (!shouldInspect(*MI))
1121 return true;
1122
1123 if (MI->getOpcode() == ARM::MVE_VPSEL ||
1124 MI->getOpcode() == ARM::MVE_VPNOT) {
1125 // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1126 // 1) It will use the VPR as a predicate operand, but doesn't have to be
1127 // instead a VPT block, which means we can assert while building up
1128 // the VPT block because we don't find another VPT or VPST to being a new
1129 // one.
1130 // 2) VPSEL still requires a VPR operand even after tail predicating,
1131 // which means we can't remove it unless there is another
1132 // instruction, such as vcmp, that can provide the VPR def.
1133 return false;
1134 }
1135
1136 // Record all VCTPs and check that they're equivalent to one another.
1137 if (isVCTP(MI) && !AddVCTP(MI))
1138 return false;
1139
1140 // Inspect uses first so that any instructions that alter the VPR don't
1141 // alter the predicate upon themselves.
1142 const MCInstrDesc &MCID = MI->getDesc();
1143 bool IsUse = false;
1144 unsigned LastOpIdx = MI->getNumOperands() - 1;
1145 for (auto &Op : enumerate(reverse(MCID.operands()))) {
1146 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1147 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1148 continue;
1149
1150 if (ARM::isVpred(Op.value().OperandType)) {
1151 VPTState::addInst(MI);
1152 IsUse = true;
1153 } else if (MI->getOpcode() != ARM::MVE_VPST) {
1154 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1155 return false;
1156 }
1157 }
1158
1159 // If we find an instruction that has been marked as not valid for tail
1160 // predication, only allow the instruction if it's contained within a valid
1161 // VPT block.
1162 bool RequiresExplicitPredication =
1163 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1164 if (isDomainMVE(MI) && RequiresExplicitPredication) {
1165 LLVM_DEBUG(if (!IsUse)
1166 dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1167 return IsUse;
1168 }
1169
1170 // If the instruction is already explicitly predicated, then the conversion
1171 // will be fine, but ensure that all store operations are predicated.
1172 if (MI->mayStore())
1173 return IsUse;
1174
1175 // If this instruction defines the VPR, update the predicate for the
1176 // proceeding instructions.
1177 if (isVectorPredicate(MI)) {
1178 // Clear the existing predicate when we're not in VPT Active state,
1179 // otherwise we add to it.
1180 if (!isVectorPredicated(MI))
1181 VPTState::resetPredicate(MI);
1182 else
1183 VPTState::addPredicate(MI);
1184 }
1185
1186 // Finally once the predicate has been modified, we can start a new VPT
1187 // block if necessary.
1188 if (isVPTOpcode(MI->getOpcode()))
1189 VPTState::CreateVPTBlock(MI);
1190
1191 return true;
1192 }
1193
runOnMachineFunction(MachineFunction & mf)1194 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1195 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1196 if (!ST.hasLOB())
1197 return false;
1198
1199 MF = &mf;
1200 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1201
1202 MLI = &getAnalysis<MachineLoopInfo>();
1203 RDA = &getAnalysis<ReachingDefAnalysis>();
1204 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1205 MRI = &MF->getRegInfo();
1206 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1207 TRI = ST.getRegisterInfo();
1208 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1209 BBUtils->computeAllBlockSizes();
1210 BBUtils->adjustBBOffsetsAfter(&MF->front());
1211
1212 bool Changed = false;
1213 for (auto ML : *MLI) {
1214 if (ML->isOutermost())
1215 Changed |= ProcessLoop(ML);
1216 }
1217 Changed |= RevertNonLoops();
1218 return Changed;
1219 }
1220
ProcessLoop(MachineLoop * ML)1221 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1222
1223 bool Changed = false;
1224
1225 // Process inner loops first.
1226 for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1227 Changed |= ProcessLoop(*I);
1228
1229 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1230 if (auto *Preheader = ML->getLoopPreheader())
1231 dbgs() << " - " << Preheader->getName() << "\n";
1232 else if (auto *Preheader = MLI->findLoopPreheader(ML))
1233 dbgs() << " - " << Preheader->getName() << "\n";
1234 else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1235 dbgs() << " - " << Preheader->getName() << "\n";
1236 for (auto *MBB : ML->getBlocks())
1237 dbgs() << " - " << MBB->getName() << "\n";
1238 );
1239
1240 // Search the given block for a loop start instruction. If one isn't found,
1241 // and there's only one predecessor block, search that one too.
1242 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1243 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1244 for (auto &MI : *MBB) {
1245 if (isLoopStart(MI))
1246 return &MI;
1247 }
1248 if (MBB->pred_size() == 1)
1249 return SearchForStart(*MBB->pred_begin());
1250 return nullptr;
1251 };
1252
1253 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1254 // Search the preheader for the start intrinsic.
1255 // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1256 // with potentially multiple set.loop.iterations, so we need to enable this.
1257 if (LoLoop.Preheader)
1258 LoLoop.Start = SearchForStart(LoLoop.Preheader);
1259 else
1260 return false;
1261
1262 // Find the low-overhead loop components and decide whether or not to fall
1263 // back to a normal loop. Also look for a vctp instructions and decide
1264 // whether we can convert that predicate using tail predication.
1265 for (auto *MBB : reverse(ML->getBlocks())) {
1266 for (auto &MI : *MBB) {
1267 if (MI.isDebugValue())
1268 continue;
1269 else if (MI.getOpcode() == ARM::t2LoopDec)
1270 LoLoop.Dec = &MI;
1271 else if (MI.getOpcode() == ARM::t2LoopEnd)
1272 LoLoop.End = &MI;
1273 else if (isLoopStart(MI))
1274 LoLoop.Start = &MI;
1275 else if (MI.getDesc().isCall()) {
1276 // TODO: Though the call will require LE to execute again, does this
1277 // mean we should revert? Always executing LE hopefully should be
1278 // faster than performing a sub,cmp,br or even subs,br.
1279 LoLoop.Revert = true;
1280 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1281 } else {
1282 // Record VPR defs and build up their corresponding vpt blocks.
1283 // Check we know how to tail predicate any mve instructions.
1284 LoLoop.AnalyseMVEInst(&MI);
1285 }
1286 }
1287 }
1288
1289 LLVM_DEBUG(LoLoop.dump());
1290 if (!LoLoop.FoundAllComponents()) {
1291 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1292 return false;
1293 }
1294
1295 // Check that the only instruction using LoopDec is LoopEnd.
1296 // TODO: Check for copy chains that really have no effect.
1297 SmallPtrSet<MachineInstr*, 2> Uses;
1298 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1299 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1300 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1301 LoLoop.Revert = true;
1302 }
1303 LoLoop.Validate(BBUtils.get());
1304 Expand(LoLoop);
1305 return true;
1306 }
1307
1308 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1309 // beq that branches to the exit branch.
1310 // TODO: We could also try to generate a cbz if the value in LR is also in
1311 // another low register.
RevertWhile(MachineInstr * MI) const1312 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1313 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1314 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1315 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1316 ARM::tBcc : ARM::t2Bcc;
1317
1318 RevertWhileLoopStart(MI, TII, BrOpc);
1319 }
1320
RevertDo(MachineInstr * MI) const1321 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1322 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1323 RevertDoLoopStart(MI, TII);
1324 }
1325
RevertLoopDec(MachineInstr * MI) const1326 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1327 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1328 MachineBasicBlock *MBB = MI->getParent();
1329 SmallPtrSet<MachineInstr*, 1> Ignore;
1330 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1331 if (I->getOpcode() == ARM::t2LoopEnd) {
1332 Ignore.insert(&*I);
1333 break;
1334 }
1335 }
1336
1337 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1338 bool SetFlags =
1339 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1340
1341 llvm::RevertLoopDec(MI, TII, SetFlags);
1342 return SetFlags;
1343 }
1344
1345 // Generate a subs, or sub and cmp, and a branch instead of an LE.
RevertLoopEnd(MachineInstr * MI,bool SkipCmp) const1346 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1347 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1348
1349 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1350 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1351 ARM::tBcc : ARM::t2Bcc;
1352
1353 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1354 }
1355
1356 // Perform dead code elimation on the loop iteration count setup expression.
1357 // If we are tail-predicating, the number of elements to be processed is the
1358 // operand of the VCTP instruction in the vector body, see getCount(), which is
1359 // register $r3 in this example:
1360 //
1361 // $lr = big-itercount-expression
1362 // ..
1363 // $lr = t2DoLoopStart renamable $lr
1364 // vector.body:
1365 // ..
1366 // $vpr = MVE_VCTP32 renamable $r3
1367 // renamable $lr = t2LoopDec killed renamable $lr, 1
1368 // t2LoopEnd renamable $lr, %vector.body
1369 // tB %end
1370 //
1371 // What we would like achieve here is to replace the do-loop start pseudo
1372 // instruction t2DoLoopStart with:
1373 //
1374 // $lr = MVE_DLSTP_32 killed renamable $r3
1375 //
1376 // Thus, $r3 which defines the number of elements, is written to $lr,
1377 // and then we want to delete the whole chain that used to define $lr,
1378 // see the comment below how this chain could look like.
1379 //
IterationCountDCE(LowOverheadLoop & LoLoop)1380 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1381 if (!LoLoop.IsTailPredicationLegal())
1382 return;
1383
1384 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1385
1386 MachineInstr *Def =
1387 RDA->getMIOperand(LoLoop.Start, isDo(LoLoop.Start) ? 1 : 0);
1388 if (!Def) {
1389 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1390 return;
1391 }
1392
1393 // Collect and remove the users of iteration count.
1394 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec,
1395 LoLoop.End };
1396 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1397 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1398 }
1399
ExpandLoopStart(LowOverheadLoop & LoLoop)1400 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1401 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1402 // When using tail-predication, try to delete the dead code that was used to
1403 // calculate the number of loop iterations.
1404 IterationCountDCE(LoLoop);
1405
1406 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1407 MachineInstr *Start = LoLoop.Start;
1408 MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1409 unsigned Opc = LoLoop.getStartOpcode();
1410 MachineOperand &Count = LoLoop.getLoopStartOperand();
1411
1412 MachineInstrBuilder MIB =
1413 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1414
1415 MIB.addDef(ARM::LR);
1416 MIB.add(Count);
1417 if (!isDo(Start))
1418 MIB.add(Start->getOperand(1));
1419
1420 LoLoop.ToRemove.insert(Start);
1421 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1422 return &*MIB;
1423 }
1424
ConvertVPTBlocks(LowOverheadLoop & LoLoop)1425 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1426 auto RemovePredicate = [](MachineInstr *MI) {
1427 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1428 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
1429 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1430 "Expected Then predicate!");
1431 MI->getOperand(PIdx).setImm(ARMVCC::None);
1432 MI->getOperand(PIdx+1).setReg(0);
1433 } else
1434 llvm_unreachable("trying to unpredicate a non-predicated instruction");
1435 };
1436
1437 for (auto &Block : LoLoop.getVPTBlocks()) {
1438 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1439
1440 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1441 assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1442 // Replace the VCMP with a VPT
1443 MachineInstrBuilder MIB =
1444 BuildMI(*At->getParent(), At, At->getDebugLoc(),
1445 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1446 MIB.addImm(ARMVCC::Then);
1447 // Register one
1448 MIB.add(TheVCMP->getOperand(1));
1449 // Register two
1450 MIB.add(TheVCMP->getOperand(2));
1451 // The comparison code, e.g. ge, eq, lt
1452 MIB.add(TheVCMP->getOperand(3));
1453 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1454 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1455 LoLoop.ToRemove.insert(TheVCMP);
1456 TheVCMP = nullptr;
1457 };
1458
1459 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1460 MachineInstr *VPST = Insts.front();
1461 if (VPTState::hasUniformPredicate(Block)) {
1462 // A vpt block starting with VPST, is only predicated upon vctp and has no
1463 // internal vpr defs:
1464 // - Remove vpst.
1465 // - Unpredicate the remaining instructions.
1466 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1467 for (unsigned i = 1; i < Insts.size(); ++i)
1468 RemovePredicate(Insts[i]);
1469 } else {
1470 // The VPT block has a non-uniform predicate but it uses a vpst and its
1471 // entry is guarded only by a vctp, which means we:
1472 // - Need to remove the original vpst.
1473 // - Then need to unpredicate any following instructions, until
1474 // we come across the divergent vpr def.
1475 // - Insert a new vpst to predicate the instruction(s) that following
1476 // the divergent vpr def.
1477 MachineInstr *Divergent = VPTState::getDivergent(Block);
1478 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1479 bool DivergentNextIsPredicated =
1480 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1481
1482 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1483 I != E; ++I)
1484 RemovePredicate(&*I);
1485
1486 // Check if the instruction defining vpr is a vcmp so it can be combined
1487 // with the VPST This should be the divergent instruction
1488 MachineInstr *VCMP =
1489 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1490
1491 if (DivergentNextIsPredicated) {
1492 // Insert a VPST at the divergent only if the next instruction
1493 // would actually use it. A VCMP following a VPST can be
1494 // merged into a VPT so do that instead if the VCMP exists.
1495 if (!VCMP) {
1496 // Create a VPST (with a null mask for now, we'll recompute it
1497 // later)
1498 MachineInstrBuilder MIB =
1499 BuildMI(*Divergent->getParent(), Divergent,
1500 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1501 MIB.addImm(0);
1502 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1503 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1504 } else {
1505 // No RDA checks are necessary here since the VPST would have been
1506 // directly after the VCMP
1507 ReplaceVCMPWithVPT(VCMP, VCMP);
1508 }
1509 }
1510 }
1511 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1512 LoLoop.ToRemove.insert(VPST);
1513 } else if (Block.containsVCTP()) {
1514 // The vctp will be removed, so the block mask of the vp(s)t will need
1515 // to be recomputed.
1516 LoLoop.BlockMasksToRecompute.insert(Insts.front());
1517 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1518 // If this block starts with a VPST then attempt to merge it with the
1519 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1520 // block that no longer exists
1521 MachineInstr *VPST = Insts.front();
1522 auto Next = ++MachineBasicBlock::iterator(VPST);
1523 assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
1524 "The instruction after a VPST must be predicated");
1525 (void)Next;
1526 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1527 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1528 !LoLoop.ToRemove.contains(VprDef)) {
1529 MachineInstr *VCMP = VprDef;
1530 // The VCMP and VPST can only be merged if the VCMP's operands will have
1531 // the same values at the VPST.
1532 // If any of the instructions between the VCMP and VPST are predicated
1533 // then a different code path is expected to have merged the VCMP and
1534 // VPST already.
1535 if (!std::any_of(++MachineBasicBlock::iterator(VCMP),
1536 MachineBasicBlock::iterator(VPST), hasVPRUse) &&
1537 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1538 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1539 ReplaceVCMPWithVPT(VCMP, VPST);
1540 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1541 LoLoop.ToRemove.insert(VPST);
1542 }
1543 }
1544 }
1545 }
1546
1547 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1548 }
1549
Expand(LowOverheadLoop & LoLoop)1550 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1551
1552 // Combine the LoopDec and LoopEnd instructions into LE(TP).
1553 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1554 MachineInstr *End = LoLoop.End;
1555 MachineBasicBlock *MBB = End->getParent();
1556 unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1557 ARM::MVE_LETP : ARM::t2LEUpdate;
1558 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1559 TII->get(Opc));
1560 MIB.addDef(ARM::LR);
1561 MIB.add(End->getOperand(0));
1562 MIB.add(End->getOperand(1));
1563 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1564 LoLoop.ToRemove.insert(LoLoop.Dec);
1565 LoLoop.ToRemove.insert(End);
1566 return &*MIB;
1567 };
1568
1569 // TODO: We should be able to automatically remove these branches before we
1570 // get here - probably by teaching analyzeBranch about the pseudo
1571 // instructions.
1572 // If there is an unconditional branch, after I, that just branches to the
1573 // next block, remove it.
1574 auto RemoveDeadBranch = [](MachineInstr *I) {
1575 MachineBasicBlock *BB = I->getParent();
1576 MachineInstr *Terminator = &BB->instr_back();
1577 if (Terminator->isUnconditionalBranch() && I != Terminator) {
1578 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1579 if (BB->isLayoutSuccessor(Succ)) {
1580 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1581 Terminator->eraseFromParent();
1582 }
1583 }
1584 };
1585
1586 if (LoLoop.Revert) {
1587 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1588 RevertWhile(LoLoop.Start);
1589 else
1590 RevertDo(LoLoop.Start);
1591 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1592 RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1593 } else {
1594 LoLoop.Start = ExpandLoopStart(LoLoop);
1595 RemoveDeadBranch(LoLoop.Start);
1596 LoLoop.End = ExpandLoopEnd(LoLoop);
1597 RemoveDeadBranch(LoLoop.End);
1598 if (LoLoop.IsTailPredicationLegal())
1599 ConvertVPTBlocks(LoLoop);
1600 for (auto *I : LoLoop.ToRemove) {
1601 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1602 I->eraseFromParent();
1603 }
1604 for (auto *I : LoLoop.BlockMasksToRecompute) {
1605 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1606 recomputeVPTBlockMask(*I);
1607 LLVM_DEBUG(dbgs() << " ... done: " << *I);
1608 }
1609 }
1610
1611 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1612 DFS.ProcessLoop();
1613 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1614 for (auto *MBB : PostOrder) {
1615 recomputeLiveIns(*MBB);
1616 // FIXME: For some reason, the live-in print order is non-deterministic for
1617 // our tests and I can't out why... So just sort them.
1618 MBB->sortUniqueLiveIns();
1619 }
1620
1621 for (auto *MBB : reverse(PostOrder))
1622 recomputeLivenessFlags(*MBB);
1623
1624 // We've moved, removed and inserted new instructions, so update RDA.
1625 RDA->reset();
1626 }
1627
RevertNonLoops()1628 bool ARMLowOverheadLoops::RevertNonLoops() {
1629 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1630 bool Changed = false;
1631
1632 for (auto &MBB : *MF) {
1633 SmallVector<MachineInstr*, 4> Starts;
1634 SmallVector<MachineInstr*, 4> Decs;
1635 SmallVector<MachineInstr*, 4> Ends;
1636
1637 for (auto &I : MBB) {
1638 if (isLoopStart(I))
1639 Starts.push_back(&I);
1640 else if (I.getOpcode() == ARM::t2LoopDec)
1641 Decs.push_back(&I);
1642 else if (I.getOpcode() == ARM::t2LoopEnd)
1643 Ends.push_back(&I);
1644 }
1645
1646 if (Starts.empty() && Decs.empty() && Ends.empty())
1647 continue;
1648
1649 Changed = true;
1650
1651 for (auto *Start : Starts) {
1652 if (Start->getOpcode() == ARM::t2WhileLoopStart)
1653 RevertWhile(Start);
1654 else
1655 RevertDo(Start);
1656 }
1657 for (auto *Dec : Decs)
1658 RevertLoopDec(Dec);
1659
1660 for (auto *End : Ends)
1661 RevertLoopEnd(End);
1662 }
1663 return Changed;
1664 }
1665
createARMLowOverheadLoopsPass()1666 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1667 return new ARMLowOverheadLoops();
1668 }
1669