• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * Test FlowGraph
19  *
20  * This file also tests a few different conversion techniques because
21  * sometimes that have caused compiler bugs.
22  */
23 
24 #include <iostream>
25 
26 #include <gtest/gtest.h>
27 
28 #include "flowgraph/ClipToRange.h"
29 #include "flowgraph/MonoBlend.h"
30 #include "flowgraph/MonoToMultiConverter.h"
31 #include "flowgraph/SourceFloat.h"
32 #include "flowgraph/RampLinear.h"
33 #include "flowgraph/SinkFloat.h"
34 #include "flowgraph/SinkI16.h"
35 #include "flowgraph/SinkI24.h"
36 #include "flowgraph/SinkI32.h"
37 #include "flowgraph/SourceI16.h"
38 #include "flowgraph/SourceI24.h"
39 
40 using namespace FLOWGRAPH_OUTER_NAMESPACE::flowgraph;
41 
42 constexpr int kBytesPerI24Packed = 3;
43 
44 constexpr int kNumSamples = 8;
45 constexpr std::array<float, kNumSamples> kInputFloat = {
46     1.0f, 0.5f, -0.25f, -1.0f,
47     0.0f, 53.9f, -87.2f, -1.02f};
48 
49 // Corresponding PCM values  as integers.
50 constexpr std::array<int16_t, kNumSamples>  kExpectedI16 = {
51     INT16_MAX, 1 << 14, INT16_MIN / 4, INT16_MIN,
52     0, INT16_MAX, INT16_MIN, INT16_MIN};
53 
54 constexpr std::array<int32_t, kNumSamples>  kExpectedI32 = {
55     INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN,
56     0, INT32_MAX, INT32_MIN, INT32_MIN};
57 
58 // =================================== FLOAT to I16 ==============
59 
60 // Simple test that tries to reproduce a Clang compiler bug.
61 __attribute__((noinline))
local_convert_float_to_int16(const float * input,int16_t * output,int count)62 void local_convert_float_to_int16(const float *input,
63                                   int16_t *output,
64                                   int count) {
65     for (int i = 0; i < count; i++) {
66         int32_t n = (int32_t) (*input++ * 32768.0f);
67         *output++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
68     }
69 }
70 
TEST(test_flowgraph,local_convert_float_int16)71 TEST(test_flowgraph, local_convert_float_int16) {
72     std::array<int16_t, kNumSamples> output;
73 
74     // Do it inline, which will probably work even with the buggy compiler.
75     // This validates the expected data.
76     const float *in = kInputFloat.data();
77     int16_t *out = output.data();
78     output.fill(777);
79     for (int i = 0; i < kNumSamples; i++) {
80         int32_t n = (int32_t) (*in++ * 32768.0f);
81         *out++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
82     }
83     for (int i = 0; i < kNumSamples; i++) {
84         EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
85     }
86 
87     // Convert audio signal using the function.
88     output.fill(777);
89     local_convert_float_to_int16(kInputFloat.data(), output.data(), kNumSamples);
90     for (int i = 0; i < kNumSamples; i++) {
91         EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
92     }
93 }
94 
TEST(test_flowgraph,module_sinki16)95 TEST(test_flowgraph, module_sinki16) {
96     static constexpr int kNumSamples = 8;
97     std::array<int16_t, kNumSamples + 10> output; // larger than input
98 
99     SourceFloat sourceFloat{1};
100     SinkI16 sinkI16{1};
101 
102     sourceFloat.setData(kInputFloat.data(), kNumSamples);
103     sourceFloat.output.connect(&sinkI16.input);
104 
105     output.fill(777);
106     int32_t numRead = sinkI16.read(output.data(), output.size());
107     ASSERT_EQ(kNumSamples, numRead);
108     for (int i = 0; i < numRead; i++) {
109         EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
110     }
111 }
112 
113 // =================================== FLOAT to I32 ==============
114 // Simple test that tries to reproduce a Clang compiler bug.
115 __attribute__((noinline))
clamp32FromFloat(float f)116 static int32_t clamp32FromFloat(float f)
117 {
118     static const float scale = (float)(1UL << 31);
119     static const float limpos = 1.;
120     static const float limneg = -1.;
121 
122     if (f <= limneg) {
123         return INT32_MIN;
124     } else if (f >= limpos) {
125         return INT32_MAX;
126     }
127     f *= scale;
128     /* integer conversion is through truncation (though int to float is not).
129      * ensure that we round to nearest, ties away from 0.
130      */
131     return f > 0 ? f + 0.5 : f - 0.5;
132 }
133 
local_convert_float_to_int32(const float * input,int32_t * output,int count)134 void local_convert_float_to_int32(const float *input,
135                                   int32_t *output,
136                                   int count) {
137     for (int i = 0; i < count; i++) {
138         *output++ = clamp32FromFloat(*input++);
139     }
140 }
141 
TEST(test_flowgraph,simple_convert_float_int32)142 TEST(test_flowgraph, simple_convert_float_int32) {
143     std::array<int32_t, kNumSamples> output;
144 
145     // Do it inline, which will probably work even with a buggy compiler.
146     // This validates the expected data.
147     const float *in = kInputFloat.data();
148     output.fill(777);
149     int32_t *out = output.data();
150     for (int i = 0; i < kNumSamples; i++) {
151         int64_t n = (int64_t) (*in++ * 2147483648.0f);
152         *out++ = (int32_t)std::min((int64_t)INT32_MAX,
153                                    std::max((int64_t)INT32_MIN, n)); // clip
154     }
155     for (int i = 0; i < kNumSamples; i++) {
156         EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
157     }
158 }
159 
TEST(test_flowgraph,local_convert_float_int32)160 TEST(test_flowgraph, local_convert_float_int32) {
161     std::array<int32_t, kNumSamples> output;
162     // Convert audio signal using the function.
163     output.fill(777);
164     local_convert_float_to_int32(kInputFloat.data(), output.data(), kNumSamples);
165     for (int i = 0; i < kNumSamples; i++) {
166         EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
167     }
168 }
169 
TEST(test_flowgraph,module_sinki32)170 TEST(test_flowgraph, module_sinki32) {
171     std::array<int32_t, kNumSamples + 10> output; // larger than input
172 
173     SourceFloat sourceFloat{1};
174     SinkI32 sinkI32{1};
175 
176     sourceFloat.setData(kInputFloat.data(), kNumSamples);
177     sourceFloat.output.connect(&sinkI32.input);
178 
179     output.fill(777);
180     int32_t numRead = sinkI32.read(output.data(), output.size());
181     ASSERT_EQ(kNumSamples, numRead);
182     for (int i = 0; i < numRead; i++) {
183         EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
184     }
185 }
186 
TEST(test_flowgraph,module_mono_to_stereo)187 TEST(test_flowgraph, module_mono_to_stereo) {
188     static const float input[] = {1.0f, 2.0f, 3.0f};
189     float output[100] = {};
190     SourceFloat sourceFloat{1};
191     MonoToMultiConverter monoToStereo{2};
192     SinkFloat sinkFloat{2};
193 
194     sourceFloat.setData(input, 3);
195 
196     sourceFloat.output.connect(&monoToStereo.input);
197     monoToStereo.output.connect(&sinkFloat.input);
198 
199     int32_t numRead = sinkFloat.read(output, 8);
200     ASSERT_EQ(3, numRead);
201     EXPECT_EQ(input[0], output[0]);
202     EXPECT_EQ(input[0], output[1]);
203     EXPECT_EQ(input[1], output[2]);
204     EXPECT_EQ(input[1], output[3]);
205 }
206 
TEST(test_flowgraph,module_ramp_linear)207 TEST(test_flowgraph, module_ramp_linear) {
208     constexpr int singleNumOutput = 1;
209     constexpr int rampSize = 5;
210     constexpr int numOutput = 100;
211     constexpr float value = 1.0f;
212     constexpr float initialTarget = 10.0f;
213     constexpr float finalTarget = 100.0f;
214     constexpr float tolerance = 0.0001f; // arbitrary
215     float output[numOutput] = {};
216     RampLinear rampLinear{1};
217     SinkFloat sinkFloat{1};
218 
219     rampLinear.input.setValue(value);
220     rampLinear.setLengthInFrames(rampSize);
221     rampLinear.output.connect(&sinkFloat.input);
222 
223     // Check that the values go to the initial target instantly.
224     rampLinear.setTarget(initialTarget);
225     int32_t singleNumRead = sinkFloat.read(output, singleNumOutput);
226     ASSERT_EQ(singleNumRead, singleNumOutput);
227     EXPECT_NEAR(value * initialTarget, output[0], tolerance);
228 
229     // Now set target and check that the linear ramp works as expected.
230     rampLinear.setTarget(finalTarget);
231     int32_t numRead = sinkFloat.read(output, numOutput);
232     const float incrementSize = (finalTarget - initialTarget) / rampSize;
233     ASSERT_EQ(numOutput, numRead);
234 
235     int i = 0;
236     for (; i < rampSize; i++) {
237         float expected = value * (initialTarget + i * incrementSize);
238         EXPECT_NEAR(expected, output[i], tolerance);
239     }
240     for (; i < numOutput; i++) {
241         float expected = value * finalTarget;
242         EXPECT_NEAR(expected, output[i], tolerance);
243     }
244 }
245 
246 // It is easiest to represent packed 24-bit data as a byte array.
247 // This test will read from input, convert to float, then write
248 // back to output as bytes.
TEST(test_flowgraph,module_packed_24)249 TEST(test_flowgraph, module_packed_24) {
250     static const uint8_t input[] = {0x01, 0x23, 0x45,
251                                     0x67, 0x89, 0xAB,
252                                     0xCD, 0xEF, 0x5A};
253     uint8_t output[99] = {};
254     SourceI24 sourceI24{1};
255     SinkI24 sinkI24{1};
256 
257     int numInputFrames = sizeof(input) / kBytesPerI24Packed;
258     sourceI24.setData(input, numInputFrames);
259     sourceI24.output.connect(&sinkI24.input);
260 
261     int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed);
262     ASSERT_EQ(numInputFrames, numRead);
263     for (size_t i = 0; i < sizeof(input); i++) {
264         EXPECT_EQ(input[i], output[i]);
265     }
266 }
267 
TEST(test_flowgraph,module_clip_to_range)268 TEST(test_flowgraph, module_clip_to_range) {
269     constexpr float myMin = -2.0f;
270     constexpr float myMax = 1.5f;
271 
272     static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3};
273     static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax};
274     float output[100];
275     SourceFloat sourceFloat{1};
276     ClipToRange clipper{1};
277     SinkFloat sinkFloat{1};
278 
279     int numInputFrames = sizeof(input) / sizeof(input[0]);
280     sourceFloat.setData(input, numInputFrames);
281 
282     clipper.setMinimum(myMin);
283     clipper.setMaximum(myMax);
284 
285     sourceFloat.output.connect(&clipper.input);
286     clipper.output.connect(&sinkFloat.input);
287 
288     int numOutputFrames = sizeof(output) / sizeof(output[0]);
289     int32_t numRead = sinkFloat.read(output, numOutputFrames);
290     ASSERT_EQ(numInputFrames, numRead);
291     constexpr float tolerance = 0.000001f; // arbitrary
292     for (int i = 0; i < numRead; i++) {
293         EXPECT_NEAR(expected[i], output[i], tolerance);
294     }
295 }
296 
TEST(test_flowgraph,module_mono_blend)297 TEST(test_flowgraph, module_mono_blend) {
298     // Two channel to two channel with 3 inputs and outputs.
299     constexpr int numChannels = 2;
300     constexpr int numFrames = 3;
301 
302     static const float input[] = {-0.7, 0.5, -0.25, 1.25, 1000, 2000};
303     static const float expected[] = {-0.1, -0.1, 0.5, 0.5, 1500, 1500};
304     float output[100];
305     SourceFloat sourceFloat{numChannels};
306     MonoBlend monoBlend{numChannels};
307     SinkFloat sinkFloat{numChannels};
308 
309     sourceFloat.setData(input, numFrames);
310 
311     sourceFloat.output.connect(&monoBlend.input);
312     monoBlend.output.connect(&sinkFloat.input);
313 
314     int32_t numRead = sinkFloat.read(output, numFrames);
315     ASSERT_EQ(numRead, numFrames);
316     constexpr float tolerance = 0.000001f; // arbitrary
317     for (int i = 0; i < numRead; i++) {
318         EXPECT_NEAR(expected[i], output[i], tolerance);
319     }
320 }
321 
322