1 /*
2 * Copyright 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * Test FlowGraph
19 *
20 * This file also tests a few different conversion techniques because
21 * sometimes that have caused compiler bugs.
22 */
23
24 #include <iostream>
25
26 #include <gtest/gtest.h>
27
28 #include "flowgraph/ClipToRange.h"
29 #include "flowgraph/MonoBlend.h"
30 #include "flowgraph/MonoToMultiConverter.h"
31 #include "flowgraph/SourceFloat.h"
32 #include "flowgraph/RampLinear.h"
33 #include "flowgraph/SinkFloat.h"
34 #include "flowgraph/SinkI16.h"
35 #include "flowgraph/SinkI24.h"
36 #include "flowgraph/SinkI32.h"
37 #include "flowgraph/SourceI16.h"
38 #include "flowgraph/SourceI24.h"
39
40 using namespace FLOWGRAPH_OUTER_NAMESPACE::flowgraph;
41
42 constexpr int kBytesPerI24Packed = 3;
43
44 constexpr int kNumSamples = 8;
45 constexpr std::array<float, kNumSamples> kInputFloat = {
46 1.0f, 0.5f, -0.25f, -1.0f,
47 0.0f, 53.9f, -87.2f, -1.02f};
48
49 // Corresponding PCM values as integers.
50 constexpr std::array<int16_t, kNumSamples> kExpectedI16 = {
51 INT16_MAX, 1 << 14, INT16_MIN / 4, INT16_MIN,
52 0, INT16_MAX, INT16_MIN, INT16_MIN};
53
54 constexpr std::array<int32_t, kNumSamples> kExpectedI32 = {
55 INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN,
56 0, INT32_MAX, INT32_MIN, INT32_MIN};
57
58 // =================================== FLOAT to I16 ==============
59
60 // Simple test that tries to reproduce a Clang compiler bug.
61 __attribute__((noinline))
local_convert_float_to_int16(const float * input,int16_t * output,int count)62 void local_convert_float_to_int16(const float *input,
63 int16_t *output,
64 int count) {
65 for (int i = 0; i < count; i++) {
66 int32_t n = (int32_t) (*input++ * 32768.0f);
67 *output++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
68 }
69 }
70
TEST(test_flowgraph,local_convert_float_int16)71 TEST(test_flowgraph, local_convert_float_int16) {
72 std::array<int16_t, kNumSamples> output;
73
74 // Do it inline, which will probably work even with the buggy compiler.
75 // This validates the expected data.
76 const float *in = kInputFloat.data();
77 int16_t *out = output.data();
78 output.fill(777);
79 for (int i = 0; i < kNumSamples; i++) {
80 int32_t n = (int32_t) (*in++ * 32768.0f);
81 *out++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
82 }
83 for (int i = 0; i < kNumSamples; i++) {
84 EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
85 }
86
87 // Convert audio signal using the function.
88 output.fill(777);
89 local_convert_float_to_int16(kInputFloat.data(), output.data(), kNumSamples);
90 for (int i = 0; i < kNumSamples; i++) {
91 EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
92 }
93 }
94
TEST(test_flowgraph,module_sinki16)95 TEST(test_flowgraph, module_sinki16) {
96 static constexpr int kNumSamples = 8;
97 std::array<int16_t, kNumSamples + 10> output; // larger than input
98
99 SourceFloat sourceFloat{1};
100 SinkI16 sinkI16{1};
101
102 sourceFloat.setData(kInputFloat.data(), kNumSamples);
103 sourceFloat.output.connect(&sinkI16.input);
104
105 output.fill(777);
106 int32_t numRead = sinkI16.read(output.data(), output.size());
107 ASSERT_EQ(kNumSamples, numRead);
108 for (int i = 0; i < numRead; i++) {
109 EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
110 }
111 }
112
113 // =================================== FLOAT to I32 ==============
114 // Simple test that tries to reproduce a Clang compiler bug.
115 __attribute__((noinline))
clamp32FromFloat(float f)116 static int32_t clamp32FromFloat(float f)
117 {
118 static const float scale = (float)(1UL << 31);
119 static const float limpos = 1.;
120 static const float limneg = -1.;
121
122 if (f <= limneg) {
123 return INT32_MIN;
124 } else if (f >= limpos) {
125 return INT32_MAX;
126 }
127 f *= scale;
128 /* integer conversion is through truncation (though int to float is not).
129 * ensure that we round to nearest, ties away from 0.
130 */
131 return f > 0 ? f + 0.5 : f - 0.5;
132 }
133
local_convert_float_to_int32(const float * input,int32_t * output,int count)134 void local_convert_float_to_int32(const float *input,
135 int32_t *output,
136 int count) {
137 for (int i = 0; i < count; i++) {
138 *output++ = clamp32FromFloat(*input++);
139 }
140 }
141
TEST(test_flowgraph,simple_convert_float_int32)142 TEST(test_flowgraph, simple_convert_float_int32) {
143 std::array<int32_t, kNumSamples> output;
144
145 // Do it inline, which will probably work even with a buggy compiler.
146 // This validates the expected data.
147 const float *in = kInputFloat.data();
148 output.fill(777);
149 int32_t *out = output.data();
150 for (int i = 0; i < kNumSamples; i++) {
151 int64_t n = (int64_t) (*in++ * 2147483648.0f);
152 *out++ = (int32_t)std::min((int64_t)INT32_MAX,
153 std::max((int64_t)INT32_MIN, n)); // clip
154 }
155 for (int i = 0; i < kNumSamples; i++) {
156 EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
157 }
158 }
159
TEST(test_flowgraph,local_convert_float_int32)160 TEST(test_flowgraph, local_convert_float_int32) {
161 std::array<int32_t, kNumSamples> output;
162 // Convert audio signal using the function.
163 output.fill(777);
164 local_convert_float_to_int32(kInputFloat.data(), output.data(), kNumSamples);
165 for (int i = 0; i < kNumSamples; i++) {
166 EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
167 }
168 }
169
TEST(test_flowgraph,module_sinki32)170 TEST(test_flowgraph, module_sinki32) {
171 std::array<int32_t, kNumSamples + 10> output; // larger than input
172
173 SourceFloat sourceFloat{1};
174 SinkI32 sinkI32{1};
175
176 sourceFloat.setData(kInputFloat.data(), kNumSamples);
177 sourceFloat.output.connect(&sinkI32.input);
178
179 output.fill(777);
180 int32_t numRead = sinkI32.read(output.data(), output.size());
181 ASSERT_EQ(kNumSamples, numRead);
182 for (int i = 0; i < numRead; i++) {
183 EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
184 }
185 }
186
TEST(test_flowgraph,module_mono_to_stereo)187 TEST(test_flowgraph, module_mono_to_stereo) {
188 static const float input[] = {1.0f, 2.0f, 3.0f};
189 float output[100] = {};
190 SourceFloat sourceFloat{1};
191 MonoToMultiConverter monoToStereo{2};
192 SinkFloat sinkFloat{2};
193
194 sourceFloat.setData(input, 3);
195
196 sourceFloat.output.connect(&monoToStereo.input);
197 monoToStereo.output.connect(&sinkFloat.input);
198
199 int32_t numRead = sinkFloat.read(output, 8);
200 ASSERT_EQ(3, numRead);
201 EXPECT_EQ(input[0], output[0]);
202 EXPECT_EQ(input[0], output[1]);
203 EXPECT_EQ(input[1], output[2]);
204 EXPECT_EQ(input[1], output[3]);
205 }
206
TEST(test_flowgraph,module_ramp_linear)207 TEST(test_flowgraph, module_ramp_linear) {
208 constexpr int singleNumOutput = 1;
209 constexpr int rampSize = 5;
210 constexpr int numOutput = 100;
211 constexpr float value = 1.0f;
212 constexpr float initialTarget = 10.0f;
213 constexpr float finalTarget = 100.0f;
214 constexpr float tolerance = 0.0001f; // arbitrary
215 float output[numOutput] = {};
216 RampLinear rampLinear{1};
217 SinkFloat sinkFloat{1};
218
219 rampLinear.input.setValue(value);
220 rampLinear.setLengthInFrames(rampSize);
221 rampLinear.output.connect(&sinkFloat.input);
222
223 // Check that the values go to the initial target instantly.
224 rampLinear.setTarget(initialTarget);
225 int32_t singleNumRead = sinkFloat.read(output, singleNumOutput);
226 ASSERT_EQ(singleNumRead, singleNumOutput);
227 EXPECT_NEAR(value * initialTarget, output[0], tolerance);
228
229 // Now set target and check that the linear ramp works as expected.
230 rampLinear.setTarget(finalTarget);
231 int32_t numRead = sinkFloat.read(output, numOutput);
232 const float incrementSize = (finalTarget - initialTarget) / rampSize;
233 ASSERT_EQ(numOutput, numRead);
234
235 int i = 0;
236 for (; i < rampSize; i++) {
237 float expected = value * (initialTarget + i * incrementSize);
238 EXPECT_NEAR(expected, output[i], tolerance);
239 }
240 for (; i < numOutput; i++) {
241 float expected = value * finalTarget;
242 EXPECT_NEAR(expected, output[i], tolerance);
243 }
244 }
245
246 // It is easiest to represent packed 24-bit data as a byte array.
247 // This test will read from input, convert to float, then write
248 // back to output as bytes.
TEST(test_flowgraph,module_packed_24)249 TEST(test_flowgraph, module_packed_24) {
250 static const uint8_t input[] = {0x01, 0x23, 0x45,
251 0x67, 0x89, 0xAB,
252 0xCD, 0xEF, 0x5A};
253 uint8_t output[99] = {};
254 SourceI24 sourceI24{1};
255 SinkI24 sinkI24{1};
256
257 int numInputFrames = sizeof(input) / kBytesPerI24Packed;
258 sourceI24.setData(input, numInputFrames);
259 sourceI24.output.connect(&sinkI24.input);
260
261 int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed);
262 ASSERT_EQ(numInputFrames, numRead);
263 for (size_t i = 0; i < sizeof(input); i++) {
264 EXPECT_EQ(input[i], output[i]);
265 }
266 }
267
TEST(test_flowgraph,module_clip_to_range)268 TEST(test_flowgraph, module_clip_to_range) {
269 constexpr float myMin = -2.0f;
270 constexpr float myMax = 1.5f;
271
272 static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3};
273 static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax};
274 float output[100];
275 SourceFloat sourceFloat{1};
276 ClipToRange clipper{1};
277 SinkFloat sinkFloat{1};
278
279 int numInputFrames = sizeof(input) / sizeof(input[0]);
280 sourceFloat.setData(input, numInputFrames);
281
282 clipper.setMinimum(myMin);
283 clipper.setMaximum(myMax);
284
285 sourceFloat.output.connect(&clipper.input);
286 clipper.output.connect(&sinkFloat.input);
287
288 int numOutputFrames = sizeof(output) / sizeof(output[0]);
289 int32_t numRead = sinkFloat.read(output, numOutputFrames);
290 ASSERT_EQ(numInputFrames, numRead);
291 constexpr float tolerance = 0.000001f; // arbitrary
292 for (int i = 0; i < numRead; i++) {
293 EXPECT_NEAR(expected[i], output[i], tolerance);
294 }
295 }
296
TEST(test_flowgraph,module_mono_blend)297 TEST(test_flowgraph, module_mono_blend) {
298 // Two channel to two channel with 3 inputs and outputs.
299 constexpr int numChannels = 2;
300 constexpr int numFrames = 3;
301
302 static const float input[] = {-0.7, 0.5, -0.25, 1.25, 1000, 2000};
303 static const float expected[] = {-0.1, -0.1, 0.5, 0.5, 1500, 1500};
304 float output[100];
305 SourceFloat sourceFloat{numChannels};
306 MonoBlend monoBlend{numChannels};
307 SinkFloat sinkFloat{numChannels};
308
309 sourceFloat.setData(input, numFrames);
310
311 sourceFloat.output.connect(&monoBlend.input);
312 monoBlend.output.connect(&sinkFloat.input);
313
314 int32_t numRead = sinkFloat.read(output, numFrames);
315 ASSERT_EQ(numRead, numFrames);
316 constexpr float tolerance = 0.000001f; // arbitrary
317 for (int i = 0; i < numRead; i++) {
318 EXPECT_NEAR(expected[i], output[i], tolerance);
319 }
320 }
321
322