1#!/usr/bin/env Rscript 2# 3# Copyright 2014 Google Inc. All rights reserved. 4# 5# Licensed under the Apache License, Version 2.0 (the "License"); 6# you may not use this file except in compliance with the License. 7# You may obtain a copy of the License at 8# 9# http://www.apache.org/licenses/LICENSE-2.0 10# 11# Unless required by applicable law or agreed to in writing, software 12# distributed under the License is distributed on an "AS IS" BASIS, 13# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14# See the License for the specific language governing permissions and 15# limitations under the License. 16 17library(RUnit) 18library(Matrix) # for sparse matrices 19 20source('tests/gen_counts.R') 21 22TestGenerateCounts <- function() { 23 report_params <- list(k = 4, m = 2) # 2 cohorts, 4 bits each 24 map <- Matrix(0, nrow = 8, ncol = 3, sparse = TRUE) # 3 possible values 25 map[1,] <- c(1, 0, 0) 26 map[2,] <- c(0, 1, 0) 27 map[3,] <- c(0, 0, 1) 28 map[4,] <- c(1, 1, 1) # 4th bit of the first cohort gets signal from all 29 map[5,] <- c(0, 0, 1) # 1st bit of the second cohort gets signal from v3 30 31 colnames(map) <- c('v1', 'v2', 'v3') 32 33 partition <- c(3, 2, 1) * 10000 34 v <- 100 # reports per client 35 36 noise0 <- list(p = 0, q = 1, f = 0) # no noise at all 37 counts0 <- GenerateCounts(c(report_params, noise0), map, partition, v) 38 39 checkEqualsNumeric(sum(counts0[1,2:4]), counts0[1,1]) 40 checkEqualsNumeric(counts0[1,5], counts0[1,1]) 41 checkEqualsNumeric(partition[3] * v, counts0[1,4] + counts0[2,2]) 42 checkEqualsNumeric(sum(partition) * v, counts0[1,1] + counts0[2,1]) 43 44 pvalues <- chisq.test(counts0[,1] / v, p = c(.5, .5))$p.value 45 for(i in 2:4) 46 pvalues <- c(pvalues, 47 chisq.test( 48 c(counts0[1,i] / v, partition[i - 1] - counts0[1,i] / v), 49 p = c(.5, .5))$p.value) 50 51 noise1 <- list(p = .5, q = .5, f = 0) # truly random IRRs 52 counts1 <- GenerateCounts(c(report_params, noise1), map, partition, v) 53 54 for(i in 2:5) 55 for(j in 1:2) 56 pvalues <- c(pvalues, 57 chisq.test(c(counts1[j,1] - counts1[j,i], counts1[j,i]), 58 p = c(.5, .5))$p.value) 59 60 noise2 <- list(p = 0, q = 1, f = 1.0) # truly random PRRs 61 counts2 <- GenerateCounts(c(report_params, noise2), map, partition, v) 62 63 checkEqualsNumeric(0, max(counts2 %% v)) # all entries must be divisible by v 64 65 counts2 <- counts2 / v 66 67 for(i in 2:5) 68 for(j in 1:2) 69 pvalues <- c(pvalues, 70 chisq.test(c(counts2[j,1] - counts2[j,i], counts2[j,i]), 71 p = c(.5, .5))$p.value) 72 73 checkTrue(min(pvalues) > 1E-9, "Chi-squared test failed") 74} 75 76TestRandomPartition <- function() { 77 78 p1 <- RandomPartition(total = 100, dgeom(0:999, prob = .1)) 79 p2 <- RandomPartition(total = 1000, dnorm(1:1000, mean = 500, sd = 1000 / 6)) 80 p3 <- RandomPartition(total = 10000, dunif(1:1000)) 81 82 # Totals must check out. 83 checkEqualsNumeric(100, sum(p1)) 84 checkEqualsNumeric(1000, sum(p2)) 85 checkEqualsNumeric(10000, sum(p3)) 86 87 # Initialize the weights vector to 1 0 1 0 1 0 ... 88 weights <- rep(c(1, 0), 100) 89 90 p4 <- RandomPartition(total = 10000, weights) 91 92 # Check that all mass is allocated to non-zero weights. 93 checkEqualsNumeric(10000, sum(p4[weights == 1])) 94 checkTrue(all(p4[weights == 0] == 0)) 95 96 p5 <- RandomPartition(total = 1000000, c(1, 2, 3, 4)) 97 p.value <- chisq.test(p5, p = c(.1, .2, .3, .4))$p.value 98 99 # Apply the chi squared test and fail if p.value is too high or too low. 100 # Probability of failure is 2 * 1E-9, which should never happen. 101 checkTrue(p.value > 1E-9) 102} 103 104TestAll <- function(){ 105 TestRandomPartition() 106 TestGenerateCounts() 107} 108 109TestAll()