1 // Currently, rust warns when an unsafe fn contains an unsafe {} block. However, 2 // in the future, this will change to the reverse. For now, suppress this 3 // warning and generally stick with being explicit about unsafety. 4 #![allow(unused_unsafe)] 5 #![cfg_attr(not(feature = "rt"), allow(dead_code))] 6 7 //! Time driver. 8 9 mod entry; 10 pub(crate) use entry::TimerEntry; 11 use entry::{EntryList, TimerHandle, TimerShared}; 12 13 mod handle; 14 pub(crate) use self::handle::Handle; 15 16 mod source; 17 pub(crate) use source::TimeSource; 18 19 mod wheel; 20 21 use crate::loom::sync::atomic::{AtomicBool, Ordering}; 22 use crate::loom::sync::Mutex; 23 use crate::runtime::driver::{self, IoHandle, IoStack}; 24 use crate::time::error::Error; 25 use crate::time::{Clock, Duration}; 26 27 use std::fmt; 28 use std::{num::NonZeroU64, ptr::NonNull, task::Waker}; 29 30 /// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout]. 31 /// 32 /// A `Driver` instance tracks the state necessary for managing time and 33 /// notifying the [`Sleep`][sleep] instances once their deadlines are reached. 34 /// 35 /// It is expected that a single instance manages many individual [`Sleep`][sleep] 36 /// instances. The `Driver` implementation is thread-safe and, as such, is able 37 /// to handle callers from across threads. 38 /// 39 /// After creating the `Driver` instance, the caller must repeatedly call `park` 40 /// or `park_timeout`. The time driver will perform no work unless `park` or 41 /// `park_timeout` is called repeatedly. 42 /// 43 /// The driver has a resolution of one millisecond. Any unit of time that falls 44 /// between milliseconds are rounded up to the next millisecond. 45 /// 46 /// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not 47 /// elapsed will be notified with an error. At this point, calling `poll` on the 48 /// [`Sleep`][sleep] instance will result in panic. 49 /// 50 /// # Implementation 51 /// 52 /// The time driver is based on the [paper by Varghese and Lauck][paper]. 53 /// 54 /// A hashed timing wheel is a vector of slots, where each slot handles a time 55 /// slice. As time progresses, the timer walks over the slot for the current 56 /// instant, and processes each entry for that slot. When the timer reaches the 57 /// end of the wheel, it starts again at the beginning. 58 /// 59 /// The implementation maintains six wheels arranged in a set of levels. As the 60 /// levels go up, the slots of the associated wheel represent larger intervals 61 /// of time. At each level, the wheel has 64 slots. Each slot covers a range of 62 /// time equal to the wheel at the lower level. At level zero, each slot 63 /// represents one millisecond of time. 64 /// 65 /// The wheels are: 66 /// 67 /// * Level 0: 64 x 1 millisecond slots. 68 /// * Level 1: 64 x 64 millisecond slots. 69 /// * Level 2: 64 x ~4 second slots. 70 /// * Level 3: 64 x ~4 minute slots. 71 /// * Level 4: 64 x ~4 hour slots. 72 /// * Level 5: 64 x ~12 day slots. 73 /// 74 /// When the timer processes entries at level zero, it will notify all the 75 /// `Sleep` instances as their deadlines have been reached. For all higher 76 /// levels, all entries will be redistributed across the wheel at the next level 77 /// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will 78 /// either be canceled (dropped) or their associated entries will reach level 79 /// zero and be notified. 80 /// 81 /// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf 82 /// [sleep]: crate::time::Sleep 83 /// [timeout]: crate::time::Timeout 84 /// [interval]: crate::time::Interval 85 #[derive(Debug)] 86 pub(crate) struct Driver { 87 /// Parker to delegate to. 88 park: IoStack, 89 } 90 91 /// Timer state shared between `Driver`, `Handle`, and `Registration`. 92 struct Inner { 93 // The state is split like this so `Handle` can access `is_shutdown` without locking the mutex 94 pub(super) state: Mutex<InnerState>, 95 96 /// True if the driver is being shutdown. 97 pub(super) is_shutdown: AtomicBool, 98 99 // When `true`, a call to `park_timeout` should immediately return and time 100 // should not advance. One reason for this to be `true` is if the task 101 // passed to `Runtime::block_on` called `task::yield_now()`. 102 // 103 // While it may look racy, it only has any effect when the clock is paused 104 // and pausing the clock is restricted to a single-threaded runtime. 105 #[cfg(feature = "test-util")] 106 did_wake: AtomicBool, 107 } 108 109 /// Time state shared which must be protected by a `Mutex` 110 struct InnerState { 111 /// The last published timer `elapsed` value. 112 elapsed: u64, 113 114 /// The earliest time at which we promise to wake up without unparking. 115 next_wake: Option<NonZeroU64>, 116 117 /// Timer wheel. 118 wheel: wheel::Wheel, 119 } 120 121 // ===== impl Driver ===== 122 123 impl Driver { 124 /// Creates a new `Driver` instance that uses `park` to block the current 125 /// thread and `time_source` to get the current time and convert to ticks. 126 /// 127 /// Specifying the source of time is useful when testing. new(park: IoStack, clock: Clock) -> (Driver, Handle)128 pub(crate) fn new(park: IoStack, clock: Clock) -> (Driver, Handle) { 129 let time_source = TimeSource::new(clock); 130 131 let handle = Handle { 132 time_source, 133 inner: Inner { 134 state: Mutex::new(InnerState { 135 elapsed: 0, 136 next_wake: None, 137 wheel: wheel::Wheel::new(), 138 }), 139 is_shutdown: AtomicBool::new(false), 140 141 #[cfg(feature = "test-util")] 142 did_wake: AtomicBool::new(false), 143 }, 144 }; 145 146 let driver = Driver { park }; 147 148 (driver, handle) 149 } 150 park(&mut self, handle: &driver::Handle)151 pub(crate) fn park(&mut self, handle: &driver::Handle) { 152 self.park_internal(handle, None) 153 } 154 park_timeout(&mut self, handle: &driver::Handle, duration: Duration)155 pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) { 156 self.park_internal(handle, Some(duration)) 157 } 158 shutdown(&mut self, rt_handle: &driver::Handle)159 pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) { 160 let handle = rt_handle.time(); 161 162 if handle.is_shutdown() { 163 return; 164 } 165 166 handle.inner.is_shutdown.store(true, Ordering::SeqCst); 167 168 // Advance time forward to the end of time. 169 170 handle.process_at_time(u64::MAX); 171 172 self.park.shutdown(rt_handle); 173 } 174 park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>)175 fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) { 176 let handle = rt_handle.time(); 177 let mut lock = handle.inner.state.lock(); 178 179 assert!(!handle.is_shutdown()); 180 181 let next_wake = lock.wheel.next_expiration_time(); 182 lock.next_wake = 183 next_wake.map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap())); 184 185 drop(lock); 186 187 match next_wake { 188 Some(when) => { 189 let now = handle.time_source.now(); 190 // Note that we effectively round up to 1ms here - this avoids 191 // very short-duration microsecond-resolution sleeps that the OS 192 // might treat as zero-length. 193 let mut duration = handle 194 .time_source 195 .tick_to_duration(when.saturating_sub(now)); 196 197 if duration > Duration::from_millis(0) { 198 if let Some(limit) = limit { 199 duration = std::cmp::min(limit, duration); 200 } 201 202 self.park_thread_timeout(rt_handle, duration); 203 } else { 204 self.park.park_timeout(rt_handle, Duration::from_secs(0)); 205 } 206 } 207 None => { 208 if let Some(duration) = limit { 209 self.park_thread_timeout(rt_handle, duration); 210 } else { 211 self.park.park(rt_handle); 212 } 213 } 214 } 215 216 // Process pending timers after waking up 217 handle.process(); 218 } 219 220 cfg_test_util! { 221 fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) { 222 let handle = rt_handle.time(); 223 let clock = &handle.time_source.clock; 224 225 if clock.can_auto_advance() { 226 self.park.park_timeout(rt_handle, Duration::from_secs(0)); 227 228 // If the time driver was woken, then the park completed 229 // before the "duration" elapsed (usually caused by a 230 // yield in `Runtime::block_on`). In this case, we don't 231 // advance the clock. 232 if !handle.did_wake() { 233 // Simulate advancing time 234 clock.advance(duration); 235 } 236 } else { 237 self.park.park_timeout(rt_handle, duration); 238 } 239 } 240 } 241 242 cfg_not_test_util! { 243 fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) { 244 self.park.park_timeout(rt_handle, duration); 245 } 246 } 247 } 248 249 impl Handle { 250 /// Runs timer related logic, and returns the next wakeup time process(&self)251 pub(self) fn process(&self) { 252 let now = self.time_source().now(); 253 254 self.process_at_time(now) 255 } 256 process_at_time(&self, mut now: u64)257 pub(self) fn process_at_time(&self, mut now: u64) { 258 let mut waker_list: [Option<Waker>; 32] = Default::default(); 259 let mut waker_idx = 0; 260 261 let mut lock = self.inner.lock(); 262 263 if now < lock.elapsed { 264 // Time went backwards! This normally shouldn't happen as the Rust language 265 // guarantees that an Instant is monotonic, but can happen when running 266 // Linux in a VM on a Windows host due to std incorrectly trusting the 267 // hardware clock to be monotonic. 268 // 269 // See <https://github.com/tokio-rs/tokio/issues/3619> for more information. 270 now = lock.elapsed; 271 } 272 273 while let Some(entry) = lock.wheel.poll(now) { 274 debug_assert!(unsafe { entry.is_pending() }); 275 276 // SAFETY: We hold the driver lock, and just removed the entry from any linked lists. 277 if let Some(waker) = unsafe { entry.fire(Ok(())) } { 278 waker_list[waker_idx] = Some(waker); 279 280 waker_idx += 1; 281 282 if waker_idx == waker_list.len() { 283 // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped. 284 drop(lock); 285 286 for waker in waker_list.iter_mut() { 287 waker.take().unwrap().wake(); 288 } 289 290 waker_idx = 0; 291 292 lock = self.inner.lock(); 293 } 294 } 295 } 296 297 // Update the elapsed cache 298 lock.elapsed = lock.wheel.elapsed(); 299 lock.next_wake = lock 300 .wheel 301 .poll_at() 302 .map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap())); 303 304 drop(lock); 305 306 for waker in waker_list[0..waker_idx].iter_mut() { 307 waker.take().unwrap().wake(); 308 } 309 } 310 311 /// Removes a registered timer from the driver. 312 /// 313 /// The timer will be moved to the cancelled state. Wakers will _not_ be 314 /// invoked. If the timer is already completed, this function is a no-op. 315 /// 316 /// This function always acquires the driver lock, even if the entry does 317 /// not appear to be registered. 318 /// 319 /// SAFETY: The timer must not be registered with some other driver, and 320 /// `add_entry` must not be called concurrently. clear_entry(&self, entry: NonNull<TimerShared>)321 pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) { 322 unsafe { 323 let mut lock = self.inner.lock(); 324 325 if entry.as_ref().might_be_registered() { 326 lock.wheel.remove(entry); 327 } 328 329 entry.as_ref().handle().fire(Ok(())); 330 } 331 } 332 333 /// Removes and re-adds an entry to the driver. 334 /// 335 /// SAFETY: The timer must be either unregistered, or registered with this 336 /// driver. No other threads are allowed to concurrently manipulate the 337 /// timer at all (the current thread should hold an exclusive reference to 338 /// the `TimerEntry`) reregister( &self, unpark: &IoHandle, new_tick: u64, entry: NonNull<TimerShared>, )339 pub(self) unsafe fn reregister( 340 &self, 341 unpark: &IoHandle, 342 new_tick: u64, 343 entry: NonNull<TimerShared>, 344 ) { 345 let waker = unsafe { 346 let mut lock = self.inner.lock(); 347 348 // We may have raced with a firing/deregistration, so check before 349 // deregistering. 350 if unsafe { entry.as_ref().might_be_registered() } { 351 lock.wheel.remove(entry); 352 } 353 354 // Now that we have exclusive control of this entry, mint a handle to reinsert it. 355 let entry = entry.as_ref().handle(); 356 357 if self.is_shutdown() { 358 unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) } 359 } else { 360 entry.set_expiration(new_tick); 361 362 // Note: We don't have to worry about racing with some other resetting 363 // thread, because add_entry and reregister require exclusive control of 364 // the timer entry. 365 match unsafe { lock.wheel.insert(entry) } { 366 Ok(when) => { 367 if lock 368 .next_wake 369 .map(|next_wake| when < next_wake.get()) 370 .unwrap_or(true) 371 { 372 unpark.unpark(); 373 } 374 375 None 376 } 377 Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe { 378 entry.fire(Ok(())) 379 }, 380 } 381 } 382 383 // Must release lock before invoking waker to avoid the risk of deadlock. 384 }; 385 386 // The timer was fired synchronously as a result of the reregistration. 387 // Wake the waker; this is needed because we might reset _after_ a poll, 388 // and otherwise the task won't be awoken to poll again. 389 if let Some(waker) = waker { 390 waker.wake(); 391 } 392 } 393 394 cfg_test_util! { 395 fn did_wake(&self) -> bool { 396 self.inner.did_wake.swap(false, Ordering::SeqCst) 397 } 398 } 399 } 400 401 // ===== impl Inner ===== 402 403 impl Inner { 404 /// Locks the driver's inner structure lock(&self) -> crate::loom::sync::MutexGuard<'_, InnerState>405 pub(super) fn lock(&self) -> crate::loom::sync::MutexGuard<'_, InnerState> { 406 self.state.lock() 407 } 408 409 // Check whether the driver has been shutdown is_shutdown(&self) -> bool410 pub(super) fn is_shutdown(&self) -> bool { 411 self.is_shutdown.load(Ordering::SeqCst) 412 } 413 } 414 415 impl fmt::Debug for Inner { fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result416 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { 417 fmt.debug_struct("Inner").finish() 418 } 419 } 420 421 #[cfg(test)] 422 mod tests; 423