1 /*
2 * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/ssl.h>
11
12 #include <assert.h>
13 #include <string.h>
14
15 #include <openssl/bytestring.h>
16 #include <openssl/err.h>
17
18 #include "../crypto/internal.h"
19 #include "internal.h"
20
21
22 BSSL_NAMESPACE_BEGIN
23
ShouldDiscard(uint64_t seq_num) const24 bool DTLSReplayBitmap::ShouldDiscard(uint64_t seq_num) const {
25 const size_t kWindowSize = map_.size();
26
27 if (seq_num > max_seq_num_) {
28 return false;
29 }
30 uint64_t idx = max_seq_num_ - seq_num;
31 return idx >= kWindowSize || map_[idx];
32 }
33
Record(uint64_t seq_num)34 void DTLSReplayBitmap::Record(uint64_t seq_num) {
35 const size_t kWindowSize = map_.size();
36
37 // Shift the window if necessary.
38 if (seq_num > max_seq_num_) {
39 uint64_t shift = seq_num - max_seq_num_;
40 if (shift >= kWindowSize) {
41 map_.reset();
42 } else {
43 map_ <<= shift;
44 }
45 max_seq_num_ = seq_num;
46 }
47
48 uint64_t idx = max_seq_num_ - seq_num;
49 if (idx < kWindowSize) {
50 map_[idx] = true;
51 }
52 }
53
dtls_record_version(const SSL * ssl)54 static uint16_t dtls_record_version(const SSL *ssl) {
55 if (ssl->s3->version == 0) {
56 // Before the version is determined, outgoing records use dTLS 1.0 for
57 // historical compatibility requirements.
58 return DTLS1_VERSION;
59 }
60 // DTLS 1.3 freezes the record version at DTLS 1.2. Previous ones use the
61 // version itself.
62 return ssl_protocol_version(ssl) >= TLS1_3_VERSION ? DTLS1_2_VERSION
63 : ssl->s3->version;
64 }
65
dtls_aead_sequence(const SSL * ssl,DTLSRecordNumber num)66 static uint64_t dtls_aead_sequence(const SSL *ssl, DTLSRecordNumber num) {
67 // DTLS 1.3 uses the sequence number with the AEAD, while DTLS 1.2 uses the
68 // combined value. If the version is not known, the epoch is unencrypted and
69 // the value is ignored.
70 return (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION)
71 ? num.sequence()
72 : num.combined();
73 }
74
75 // reconstruct_epoch finds the largest epoch that ends with the epoch bits from
76 // |wire_epoch| that is less than or equal to |current_epoch|, to match the
77 // epoch reconstruction algorithm described in RFC 9147 section 4.2.2.
reconstruct_epoch(uint8_t wire_epoch,uint16_t current_epoch)78 static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) {
79 uint16_t current_epoch_high = current_epoch & 0xfffc;
80 uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high;
81 if (epoch > current_epoch && current_epoch_high > 0) {
82 epoch -= 0x4;
83 }
84 return epoch;
85 }
86
reconstruct_seqnum(uint16_t wire_seq,uint64_t seq_mask,uint64_t max_valid_seqnum)87 uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask,
88 uint64_t max_valid_seqnum) {
89 // Although DTLS 1.3 can support sequence numbers up to 2^64-1, we continue to
90 // enforce the DTLS 1.2 2^48-1 limit. With a minimal DTLS 1.3 record header (2
91 // bytes), no payload, and 16 byte AEAD overhead, sending 2^48 records would
92 // require 5 petabytes. This allows us to continue to pack a DTLS record
93 // number into an 8-byte structure.
94 assert(max_valid_seqnum <= DTLSRecordNumber::kMaxSequence);
95 assert(seq_mask == 0xff || seq_mask == 0xffff);
96
97 uint64_t max_seqnum_plus_one = max_valid_seqnum + 1;
98 uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask;
99 uint64_t step = seq_mask + 1;
100 // This addition cannot overflow. It is at most 2^48 + seq_mask. It, however,
101 // may exceed 2^48-1.
102 uint64_t seqnum = max_seqnum_plus_one + diff;
103 bool too_large = seqnum > DTLSRecordNumber::kMaxSequence;
104 // If the diff is larger than half the step size, then the closest seqnum
105 // to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of
106 // seqnum.
107 bool closer_is_less = diff > step / 2;
108 // Subtracting step from seqnum will cause underflow if seqnum is too small.
109 bool would_underflow = seqnum < step;
110 if (too_large || (closer_is_less && !would_underflow)) {
111 seqnum -= step;
112 }
113 assert(seqnum <= DTLSRecordNumber::kMaxSequence);
114 return seqnum;
115 }
116
cbs_to_writable_bytes(CBS cbs)117 static Span<uint8_t> cbs_to_writable_bytes(CBS cbs) {
118 return Span(const_cast<uint8_t *>(CBS_data(&cbs)), CBS_len(&cbs));
119 }
120
121 struct ParsedDTLSRecord {
122 // read_epoch will be null if the record is for an unrecognized epoch. In that
123 // case, |number| may be unset.
124 DTLSReadEpoch *read_epoch = nullptr;
125 DTLSRecordNumber number;
126 CBS header, body;
127 uint8_t type = 0;
128 uint16_t version = 0;
129 };
130
use_dtls13_record_header(const SSL * ssl,uint16_t epoch)131 static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) {
132 // Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for
133 // backwards compatibility.
134 return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION &&
135 epoch > 0;
136 }
137
parse_dtls13_record(SSL * ssl,CBS * in,ParsedDTLSRecord * out)138 static bool parse_dtls13_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
139 if (out->type & 0x10) {
140 // Connection ID bit set, which we didn't negotiate.
141 return false;
142 }
143
144 uint16_t max_epoch = ssl->d1->read_epoch.epoch;
145 if (ssl->d1->next_read_epoch != nullptr) {
146 max_epoch = std::max(max_epoch, ssl->d1->next_read_epoch->epoch);
147 }
148 uint16_t epoch = reconstruct_epoch(out->type, max_epoch);
149 size_t seq_len = (out->type & 0x08) ? 2 : 1;
150 CBS seq_bytes;
151 if (!CBS_get_bytes(in, &seq_bytes, seq_len)) {
152 return false;
153 }
154 if (out->type & 0x04) {
155 // 16-bit length present
156 if (!CBS_get_u16_length_prefixed(in, &out->body)) {
157 return false;
158 }
159 } else {
160 // No length present - the remaining contents are the whole packet.
161 // CBS_get_bytes is used here to advance |in| to the end so that future
162 // code that computes the number of consumed bytes functions correctly.
163 BSSL_CHECK(CBS_get_bytes(in, &out->body, CBS_len(in)));
164 }
165
166 // Drop the previous read epoch if expired.
167 if (ssl->d1->prev_read_epoch != nullptr &&
168 ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec >
169 ssl->d1->prev_read_epoch->expire) {
170 ssl->d1->prev_read_epoch = nullptr;
171 }
172
173 // Look up the corresponding epoch. This header form only matches encrypted
174 // DTLS 1.3 epochs.
175 DTLSReadEpoch *read_epoch = nullptr;
176 if (epoch == ssl->d1->read_epoch.epoch) {
177 read_epoch = &ssl->d1->read_epoch;
178 } else if (ssl->d1->next_read_epoch != nullptr &&
179 epoch == ssl->d1->next_read_epoch->epoch) {
180 read_epoch = ssl->d1->next_read_epoch.get();
181 } else if (ssl->d1->prev_read_epoch != nullptr &&
182 epoch == ssl->d1->prev_read_epoch->epoch.epoch) {
183 read_epoch = &ssl->d1->prev_read_epoch->epoch;
184 }
185 if (read_epoch != nullptr && use_dtls13_record_header(ssl, epoch)) {
186 out->read_epoch = read_epoch;
187
188 // Decrypt and reconstruct the sequence number:
189 uint8_t mask[2];
190 if (!read_epoch->rn_encrypter->GenerateMask(mask, out->body)) {
191 // GenerateMask most likely failed because the record body was not long
192 // enough.
193 return false;
194 }
195 // Apply the mask to the sequence number in-place. The header (with the
196 // decrypted sequence number bytes) is used as the additional data for the
197 // AEAD function.
198 auto writable_seq = cbs_to_writable_bytes(seq_bytes);
199 uint64_t seq = 0;
200 for (size_t i = 0; i < writable_seq.size(); i++) {
201 writable_seq[i] ^= mask[i];
202 seq = (seq << 8) | writable_seq[i];
203 }
204 uint64_t full_seq = reconstruct_seqnum(seq, (1 << (seq_len * 8)) - 1,
205 read_epoch->bitmap.max_seq_num());
206 out->number = DTLSRecordNumber(epoch, full_seq);
207 }
208
209 return true;
210 }
211
parse_dtls12_record(SSL * ssl,CBS * in,ParsedDTLSRecord * out)212 static bool parse_dtls12_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
213 uint64_t epoch_and_seq;
214 if (!CBS_get_u16(in, &out->version) || //
215 !CBS_get_u64(in, &epoch_and_seq) ||
216 !CBS_get_u16_length_prefixed(in, &out->body)) {
217 return false;
218 }
219 out->number = DTLSRecordNumber::FromCombined(epoch_and_seq);
220
221 uint16_t epoch = out->number.epoch();
222 bool version_ok;
223 if (epoch == 0) {
224 // Only check the first byte. Enforcing beyond that can prevent decoding
225 // version negotiation failure alerts.
226 version_ok = (out->version >> 8) == DTLS1_VERSION_MAJOR;
227 } else {
228 version_ok = out->version == dtls_record_version(ssl);
229 }
230 if (!version_ok) {
231 return false;
232 }
233
234 // Look up the corresponding epoch. In DTLS 1.2, we only need to consider one
235 // epoch.
236 if (epoch == ssl->d1->read_epoch.epoch &&
237 !use_dtls13_record_header(ssl, epoch)) {
238 out->read_epoch = &ssl->d1->read_epoch;
239 }
240
241 return true;
242 }
243
parse_dtls_record(SSL * ssl,CBS * cbs,ParsedDTLSRecord * out)244 static bool parse_dtls_record(SSL *ssl, CBS *cbs, ParsedDTLSRecord *out) {
245 CBS copy = *cbs;
246 if (!CBS_get_u8(cbs, &out->type)) {
247 return false;
248 }
249
250 bool ok;
251 if ((out->type & 0xe0) == 0x20) {
252 ok = parse_dtls13_record(ssl, cbs, out);
253 } else {
254 ok = parse_dtls12_record(ssl, cbs, out);
255 }
256 if (!ok) {
257 return false;
258 }
259
260 if (CBS_len(&out->body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
261 return false;
262 }
263
264 size_t header_len = CBS_data(&out->body) - CBS_data(©);
265 BSSL_CHECK(CBS_get_bytes(©, &out->header, header_len));
266 return true;
267 }
268
dtls_open_record(SSL * ssl,uint8_t * out_type,DTLSRecordNumber * out_number,Span<uint8_t> * out,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)269 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
270 DTLSRecordNumber *out_number,
271 Span<uint8_t> *out,
272 size_t *out_consumed,
273 uint8_t *out_alert, Span<uint8_t> in) {
274 *out_consumed = 0;
275 if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) {
276 return ssl_open_record_close_notify;
277 }
278
279 if (in.empty()) {
280 return ssl_open_record_partial;
281 }
282
283 CBS cbs(in);
284 ParsedDTLSRecord record;
285 if (!parse_dtls_record(ssl, &cbs, &record)) {
286 // The record header was incomplete or malformed. Drop the entire packet.
287 *out_consumed = in.size();
288 return ssl_open_record_discard;
289 }
290
291 ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, record.header);
292
293 if (record.read_epoch == nullptr ||
294 record.read_epoch->bitmap.ShouldDiscard(record.number.sequence())) {
295 // Drop this record. It's from an unknown epoch or is a replay. Note that if
296 // the record is from next epoch, it could be buffered for later. For
297 // simplicity, drop it and expect retransmit to handle it later; DTLS must
298 // handle packet loss anyway.
299 *out_consumed = in.size() - CBS_len(&cbs);
300 return ssl_open_record_discard;
301 }
302
303 // Decrypt the body in-place.
304 if (!record.read_epoch->aead->Open(out, record.type, record.version,
305 dtls_aead_sequence(ssl, record.number),
306 record.header,
307 cbs_to_writable_bytes(record.body))) {
308 // Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347.
309 // Clear the error queue of any errors decryption may have added. Drop the
310 // entire packet as it must not have come from the peer.
311 //
312 // TODO(davidben): This doesn't distinguish malloc failures from encryption
313 // failures.
314 ERR_clear_error();
315 *out_consumed = in.size() - CBS_len(&cbs);
316 return ssl_open_record_discard;
317 }
318 *out_consumed = in.size() - CBS_len(&cbs);
319
320 // DTLS 1.3 hides the record type inside the encrypted data.
321 bool has_padding = !record.read_epoch->aead->is_null_cipher() &&
322 ssl_protocol_version(ssl) >= TLS1_3_VERSION;
323 // Check the plaintext length.
324 size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0);
325 if (out->size() > plaintext_limit) {
326 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
327 *out_alert = SSL_AD_RECORD_OVERFLOW;
328 return ssl_open_record_error;
329 }
330
331 if (has_padding) {
332 do {
333 if (out->empty()) {
334 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
335 *out_alert = SSL_AD_DECRYPT_ERROR;
336 return ssl_open_record_error;
337 }
338 record.type = out->back();
339 *out = out->subspan(0, out->size() - 1);
340 } while (record.type == 0);
341 }
342
343 record.read_epoch->bitmap.Record(record.number.sequence());
344
345 // Once we receive a record from the next epoch in DTLS 1.3, it becomes the
346 // current epoch. Also save the previous epoch. This allows us to handle
347 // packet reordering on KeyUpdate, as well as ACK retransmissions of the
348 // Finished flight.
349 if (record.read_epoch == ssl->d1->next_read_epoch.get()) {
350 assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION);
351 auto prev = MakeUnique<DTLSPrevReadEpoch>();
352 if (prev == nullptr) {
353 *out_alert = SSL_AD_INTERNAL_ERROR;
354 return ssl_open_record_error;
355 }
356
357 // Release the epoch after a timeout.
358 prev->expire = ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec;
359 if (prev->expire >= UINT64_MAX - DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS) {
360 prev->expire = UINT64_MAX; // Saturate on overflow.
361 } else {
362 prev->expire += DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS;
363 }
364
365 prev->epoch = std::move(ssl->d1->read_epoch);
366 ssl->d1->prev_read_epoch = std::move(prev);
367 ssl->d1->read_epoch = std::move(*ssl->d1->next_read_epoch);
368 ssl->d1->next_read_epoch = nullptr;
369 }
370
371 // TODO(davidben): Limit the number of empty records as in TLS? This is only
372 // useful if we also limit discarded packets.
373
374 if (record.type == SSL3_RT_ALERT) {
375 return ssl_process_alert(ssl, out_alert, *out);
376 }
377
378 // Reject application data in epochs that do not allow it.
379 if (record.type == SSL3_RT_APPLICATION_DATA) {
380 bool app_data_allowed;
381 if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
382 // Application data is allowed in 0-RTT (epoch 1) and after the handshake
383 // (3 and up).
384 app_data_allowed =
385 record.number.epoch() == 1 || record.number.epoch() >= 3;
386 } else {
387 // Application data is allowed starting epoch 1.
388 app_data_allowed = record.number.epoch() >= 1;
389 }
390 if (!app_data_allowed) {
391 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
392 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
393 return ssl_open_record_error;
394 }
395 }
396
397 ssl->s3->warning_alert_count = 0;
398
399 *out_type = record.type;
400 *out_number = record.number;
401 return ssl_open_record_success;
402 }
403
get_write_epoch(const SSL * ssl,uint16_t epoch)404 static DTLSWriteEpoch *get_write_epoch(const SSL *ssl, uint16_t epoch) {
405 if (ssl->d1->write_epoch.epoch() == epoch) {
406 return &ssl->d1->write_epoch;
407 }
408 for (const auto &e : ssl->d1->extra_write_epochs) {
409 if (e->epoch() == epoch) {
410 return e.get();
411 }
412 }
413 return nullptr;
414 }
415
dtls_record_header_write_len(const SSL * ssl,uint16_t epoch)416 size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) {
417 if (!use_dtls13_record_header(ssl, epoch)) {
418 return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH;
419 }
420 // The DTLS 1.3 has a variable length record header. We never send Connection
421 // ID, we always send 16-bit sequence numbers, and we send a length. (Length
422 // can be omitted, but only for the last record of a packet. Since we send
423 // multiple records in one packet, it's easier to implement always sending the
424 // length.)
425 return DTLS1_3_RECORD_HEADER_WRITE_LENGTH;
426 }
427
dtls_max_seal_overhead(const SSL * ssl,uint16_t epoch)428 size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch) {
429 DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
430 if (write_epoch == nullptr) {
431 return 0;
432 }
433 size_t ret = dtls_record_header_write_len(ssl, epoch) +
434 write_epoch->aead->MaxOverhead();
435 if (use_dtls13_record_header(ssl, epoch)) {
436 // Add 1 byte for the encrypted record type.
437 ret++;
438 }
439 return ret;
440 }
441
dtls_seal_prefix_len(const SSL * ssl,uint16_t epoch)442 size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) {
443 DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
444 if (write_epoch == nullptr) {
445 return 0;
446 }
447 return dtls_record_header_write_len(ssl, epoch) +
448 write_epoch->aead->ExplicitNonceLen();
449 }
450
dtls_seal_max_input_len(const SSL * ssl,uint16_t epoch,size_t max_out)451 size_t dtls_seal_max_input_len(const SSL *ssl, uint16_t epoch, size_t max_out) {
452 DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
453 if (write_epoch == nullptr) {
454 return 0;
455 }
456 size_t header_len = dtls_record_header_write_len(ssl, epoch);
457 if (max_out <= header_len) {
458 return 0;
459 }
460 max_out -= header_len;
461 max_out = write_epoch->aead->MaxSealInputLen(max_out);
462 if (max_out > 0 && use_dtls13_record_header(ssl, epoch)) {
463 // Remove 1 byte for the encrypted record type.
464 max_out--;
465 }
466 return max_out;
467 }
468
dtls_seal_record(SSL * ssl,DTLSRecordNumber * out_number,uint8_t * out,size_t * out_len,size_t max_out,uint8_t type,const uint8_t * in,size_t in_len,uint16_t epoch)469 bool dtls_seal_record(SSL *ssl, DTLSRecordNumber *out_number, uint8_t *out,
470 size_t *out_len, size_t max_out, uint8_t type,
471 const uint8_t *in, size_t in_len, uint16_t epoch) {
472 const size_t prefix = dtls_seal_prefix_len(ssl, epoch);
473 if (buffers_alias(in, in_len, out, max_out) &&
474 (max_out < prefix || out + prefix != in)) {
475 OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
476 return false;
477 }
478
479 // Determine the parameters for the current epoch.
480 DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
481 if (write_epoch == nullptr) {
482 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
483 return false;
484 }
485
486 const size_t record_header_len = dtls_record_header_write_len(ssl, epoch);
487
488 // Ensure the sequence number update does not overflow.
489 DTLSRecordNumber record_number = write_epoch->next_record;
490 if (!record_number.HasNext()) {
491 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
492 return false;
493 }
494
495 bool dtls13_header = use_dtls13_record_header(ssl, epoch);
496 uint8_t *extra_in = NULL;
497 size_t extra_in_len = 0;
498 if (dtls13_header) {
499 extra_in = &type;
500 extra_in_len = 1;
501 }
502
503 size_t ciphertext_len;
504 if (!write_epoch->aead->CiphertextLen(&ciphertext_len, in_len,
505 extra_in_len)) {
506 OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
507 return false;
508 }
509 if (max_out < record_header_len + ciphertext_len) {
510 OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
511 return false;
512 }
513
514 uint16_t record_version = dtls_record_version(ssl);
515 if (dtls13_header) {
516 // The first byte of the DTLS 1.3 record header has the following format:
517 // 0 1 2 3 4 5 6 7
518 // +-+-+-+-+-+-+-+-+
519 // |0|0|1|C|S|L|E E|
520 // +-+-+-+-+-+-+-+-+
521 //
522 // We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length
523 // is present), which is a mask of 0x2c. The E E bits are the low-order two
524 // bits of the epoch.
525 //
526 // +-+-+-+-+-+-+-+-+
527 // |0|0|1|0|1|1|E E|
528 // +-+-+-+-+-+-+-+-+
529 out[0] = 0x2c | (epoch & 0x3);
530 // We always use a two-byte sequence number. A one-byte sequence number
531 // would require coordinating with the application on ACK feedback to know
532 // that the peer is not too far behind.
533 CRYPTO_store_u16_be(out + 1, write_epoch->next_record.sequence());
534 // TODO(crbug.com/42290594): When we know the record is last in the packet,
535 // omit the length.
536 CRYPTO_store_u16_be(out + 3, ciphertext_len);
537 } else {
538 out[0] = type;
539 CRYPTO_store_u16_be(out + 1, record_version);
540 CRYPTO_store_u64_be(out + 3, record_number.combined());
541 CRYPTO_store_u16_be(out + 11, ciphertext_len);
542 }
543 Span<const uint8_t> header(out, record_header_len);
544
545 if (!write_epoch->aead->SealScatter(
546 out + record_header_len, out + prefix, out + prefix + in_len, type,
547 record_version, dtls_aead_sequence(ssl, record_number), header, in,
548 in_len, extra_in, extra_in_len)) {
549 return false;
550 }
551
552 // Perform record number encryption (RFC 9147 section 4.2.3).
553 if (dtls13_header) {
554 // Record number encryption uses bytes from the ciphertext as a sample to
555 // generate the mask used for encryption. For simplicity, pass in the whole
556 // ciphertext as the sample - GenerateRecordNumberMask will read only what
557 // it needs (and error if |sample| is too short).
558 Span<const uint8_t> sample(out + record_header_len, ciphertext_len);
559 uint8_t mask[2];
560 if (!write_epoch->rn_encrypter->GenerateMask(mask, sample)) {
561 return false;
562 }
563 out[1] ^= mask[0];
564 out[2] ^= mask[1];
565 }
566
567 *out_number = record_number;
568 write_epoch->next_record = record_number.Next();
569 *out_len = record_header_len + ciphertext_len;
570 ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header);
571 return true;
572 }
573
574 BSSL_NAMESPACE_END
575