• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use core::array;
2 use core::borrow::BorrowMut;
3 use std::fmt;
4 use std::iter::FusedIterator;
5 
6 use super::lazy_buffer::LazyBuffer;
7 use alloc::vec::Vec;
8 
9 use crate::adaptors::checked_binomial;
10 
11 /// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations)
12 pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>;
13 /// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations)
14 pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>;
15 
16 /// Create a new `Combinations` from a clonable iterator.
combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I> where I::Item: Clone,17 pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I>
18 where
19     I::Item: Clone,
20 {
21     Combinations::new(iter, (0..k).collect())
22 }
23 
24 /// Create a new `ArrayCombinations` from a clonable iterator.
array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K> where I::Item: Clone,25 pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K>
26 where
27     I::Item: Clone,
28 {
29     ArrayCombinations::new(iter, array::from_fn(|i| i))
30 }
31 
32 /// An iterator to iterate through all the `k`-length combinations in an iterator.
33 ///
34 /// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information.
35 #[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
36 pub struct CombinationsGeneric<I: Iterator, Idx> {
37     indices: Idx,
38     pool: LazyBuffer<I>,
39     first: bool,
40 }
41 
42 /// A type holding indices of elements in a pool or buffer of items from an inner iterator
43 /// and used to pick out different combinations in a generic way.
44 pub trait PoolIndex<T>: BorrowMut<[usize]> {
45     type Item;
46 
extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item where T: Clone47     fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item
48     where
49         T: Clone;
50 
len(&self) -> usize51     fn len(&self) -> usize {
52         self.borrow().len()
53     }
54 }
55 
56 impl<T> PoolIndex<T> for Vec<usize> {
57     type Item = Vec<T>;
58 
extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T> where T: Clone,59     fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T>
60     where
61         T: Clone,
62     {
63         pool.get_at(self)
64     }
65 }
66 
67 impl<T, const K: usize> PoolIndex<T> for [usize; K] {
68     type Item = [T; K];
69 
extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K] where T: Clone,70     fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K]
71     where
72         T: Clone,
73     {
74         pool.get_array(*self)
75     }
76 }
77 
78 impl<I, Idx> Clone for CombinationsGeneric<I, Idx>
79 where
80     I: Iterator + Clone,
81     I::Item: Clone,
82     Idx: Clone,
83 {
84     clone_fields!(indices, pool, first);
85 }
86 
87 impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx>
88 where
89     I: Iterator + fmt::Debug,
90     I::Item: fmt::Debug,
91     Idx: fmt::Debug,
92 {
93     debug_fmt_fields!(Combinations, indices, pool, first);
94 }
95 
96 impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> {
97     /// Constructor with arguments the inner iterator and the initial state for the indices.
new(iter: I, indices: Idx) -> Self98     fn new(iter: I, indices: Idx) -> Self {
99         Self {
100             indices,
101             pool: LazyBuffer::new(iter),
102             first: true,
103         }
104     }
105 
106     /// Returns the length of a combination produced by this iterator.
107     #[inline]
k(&self) -> usize108     pub fn k(&self) -> usize {
109         self.indices.len()
110     }
111 
112     /// Returns the (current) length of the pool from which combination elements are
113     /// selected. This value can change between invocations of [`next`](Combinations::next).
114     #[inline]
n(&self) -> usize115     pub fn n(&self) -> usize {
116         self.pool.len()
117     }
118 
119     /// Returns a reference to the source pool.
120     #[inline]
src(&self) -> &LazyBuffer<I>121     pub(crate) fn src(&self) -> &LazyBuffer<I> {
122         &self.pool
123     }
124 
125     /// Return the length of the inner iterator and the count of remaining combinations.
n_and_count(self) -> (usize, usize)126     pub(crate) fn n_and_count(self) -> (usize, usize) {
127         let Self {
128             indices,
129             pool,
130             first,
131         } = self;
132         let n = pool.count();
133         (n, remaining_for(n, first, indices.borrow()).unwrap())
134     }
135 
136     /// Initialises the iterator by filling a buffer with elements from the
137     /// iterator. Returns true if there are no combinations, false otherwise.
init(&mut self) -> bool138     fn init(&mut self) -> bool {
139         self.pool.prefill(self.k());
140         let done = self.k() > self.n();
141         if !done {
142             self.first = false;
143         }
144 
145         done
146     }
147 
148     /// Increments indices representing the combination to advance to the next
149     /// (in lexicographic order by increasing sequence) combination. For example
150     /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...`
151     ///
152     /// Returns true if we've run out of combinations, false otherwise.
increment_indices(&mut self) -> bool153     fn increment_indices(&mut self) -> bool {
154         // Borrow once instead of noise each time it's indexed
155         let indices = self.indices.borrow_mut();
156 
157         if indices.is_empty() {
158             return true; // Done
159         }
160         // Scan from the end, looking for an index to increment
161         let mut i: usize = indices.len() - 1;
162 
163         // Check if we need to consume more from the iterator
164         if indices[i] == self.pool.len() - 1 {
165             self.pool.get_next(); // may change pool size
166         }
167 
168         while indices[i] == i + self.pool.len() - indices.len() {
169             if i > 0 {
170                 i -= 1;
171             } else {
172                 // Reached the last combination
173                 return true;
174             }
175         }
176 
177         // Increment index, and reset the ones to its right
178         indices[i] += 1;
179         for j in i + 1..indices.len() {
180             indices[j] = indices[j - 1] + 1;
181         }
182         // If we've made it this far, we haven't run out of combos
183         false
184     }
185 
186     /// Returns the n-th item or the number of successful steps.
try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize> where I: Iterator, I::Item: Clone,187     pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize>
188     where
189         I: Iterator,
190         I::Item: Clone,
191     {
192         let done = if self.first {
193             self.init()
194         } else {
195             self.increment_indices()
196         };
197         if done {
198             return Err(0);
199         }
200         for i in 0..n {
201             if self.increment_indices() {
202                 return Err(i + 1);
203             }
204         }
205         Ok(self.indices.extract_item(&self.pool))
206     }
207 }
208 
209 impl<I, Idx> Iterator for CombinationsGeneric<I, Idx>
210 where
211     I: Iterator,
212     I::Item: Clone,
213     Idx: PoolIndex<I::Item>,
214 {
215     type Item = Idx::Item;
next(&mut self) -> Option<Self::Item>216     fn next(&mut self) -> Option<Self::Item> {
217         let done = if self.first {
218             self.init()
219         } else {
220             self.increment_indices()
221         };
222 
223         if done {
224             return None;
225         }
226 
227         Some(self.indices.extract_item(&self.pool))
228     }
229 
nth(&mut self, n: usize) -> Option<Self::Item>230     fn nth(&mut self, n: usize) -> Option<Self::Item> {
231         self.try_nth(n).ok()
232     }
233 
size_hint(&self) -> (usize, Option<usize>)234     fn size_hint(&self) -> (usize, Option<usize>) {
235         let (mut low, mut upp) = self.pool.size_hint();
236         low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX);
237         upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow()));
238         (low, upp)
239     }
240 
241     #[inline]
count(self) -> usize242     fn count(self) -> usize {
243         self.n_and_count().1
244     }
245 }
246 
247 impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx>
248 where
249     I: Iterator,
250     I::Item: Clone,
251     Idx: PoolIndex<I::Item>,
252 {
253 }
254 
255 impl<I: Iterator> Combinations<I> {
256     /// Resets this `Combinations` back to an initial state for combinations of length
257     /// `k` over the same pool data source. If `k` is larger than the current length
258     /// of the data pool an attempt is made to prefill the pool so that it holds `k`
259     /// elements.
reset(&mut self, k: usize)260     pub(crate) fn reset(&mut self, k: usize) {
261         self.first = true;
262 
263         if k < self.indices.len() {
264             self.indices.truncate(k);
265             for i in 0..k {
266                 self.indices[i] = i;
267             }
268         } else {
269             for i in 0..self.indices.len() {
270                 self.indices[i] = i;
271             }
272             self.indices.extend(self.indices.len()..k);
273             self.pool.prefill(k);
274         }
275     }
276 }
277 
278 /// For a given size `n`, return the count of remaining combinations or None if it would overflow.
remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize>279 fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
280     let k = indices.len();
281     if n < k {
282         Some(0)
283     } else if first {
284         checked_binomial(n, k)
285     } else {
286         // https://en.wikipedia.org/wiki/Combinatorial_number_system
287         // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf
288 
289         // The combinations generated after the current one can be counted by counting as follows:
290         // - The subsequent combinations that differ in indices[0]:
291         //   If subsequent combinations differ in indices[0], then their value for indices[0]
292         //   must be at least 1 greater than the current indices[0].
293         //   As indices is strictly monotonically sorted, this means we can effectively choose k values
294         //   from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities.
295         // - The subsequent combinations with same indices[0], but differing indices[1]:
296         //   Here we can choose k - 1 values from (n - 1 - indices[1]) values,
297         //   leading to binomial(n - 1 - indices[1], k - 1) possibilities.
298         // - (...)
299         // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
300         //   Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i).
301         //   Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
302 
303         // Below, `n0` resembles indices[i].
304         indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
305             sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?)
306         })
307     }
308 }
309