• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkBlitMask_opts_DEFINED
9 #define SkBlitMask_opts_DEFINED
10 
11 #include "include/private/base/SkFeatures.h"
12 #include "src/core/Sk4px.h"
13 
14 #if defined(SK_ARM_HAS_NEON)
15     #include <arm_neon.h>
16 #endif
17 
18 namespace SK_OPTS_NS {
19 
20 #if defined(SK_ARM_HAS_NEON)
21     // The Sk4px versions below will work fine with NEON, but we have had many indications
22     // that it doesn't perform as well as this NEON-specific code.
23 
24     #define NEON_A (SK_A32_SHIFT / 8)
25     #define NEON_R (SK_R32_SHIFT / 8)
26     #define NEON_G (SK_G32_SHIFT / 8)
27     #define NEON_B (SK_B32_SHIFT / 8)
28 
SkAlpha255To256_neon8(uint8x8_t alpha)29     static inline uint16x8_t SkAlpha255To256_neon8(uint8x8_t alpha) {
30         return vaddw_u8(vdupq_n_u16(1), alpha);
31     }
32 
SkAlphaMul_neon8(uint8x8_t color,uint16x8_t scale)33     static inline uint8x8_t SkAlphaMul_neon8(uint8x8_t color, uint16x8_t scale) {
34         return vshrn_n_u16(vmovl_u8(color) * scale, 8);
35     }
36 
SkAlphaMulQ_neon8(uint8x8x4_t color,uint16x8_t scale)37     static inline uint8x8x4_t SkAlphaMulQ_neon8(uint8x8x4_t color, uint16x8_t scale) {
38         uint8x8x4_t ret;
39 
40         ret.val[0] = SkAlphaMul_neon8(color.val[0], scale);
41         ret.val[1] = SkAlphaMul_neon8(color.val[1], scale);
42         ret.val[2] = SkAlphaMul_neon8(color.val[2], scale);
43         ret.val[3] = SkAlphaMul_neon8(color.val[3], scale);
44 
45         return ret;
46     }
47 
48 
49     template <bool isTranslucent>
blit_mask_d32_a8_neon(void * SK_RESTRICT dst,size_t dstRB,const void * SK_RESTRICT maskPtr,size_t maskRB,SkColor color,int width,int height)50     static void blit_mask_d32_a8_neon(void* SK_RESTRICT dst, size_t dstRB,
51                                       const void* SK_RESTRICT maskPtr, size_t maskRB,
52                                       SkColor color, int width, int height) {
53         const SkPMColor pmc = SkPreMultiplyColor(color);
54         const U8CPU colorAlpha = SkGetPackedA32(pmc);
55         SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
56         const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
57         uint8x8x4_t vpmc;
58 
59         // Nine patch may set maskRB to 0 to blit the same row repeatedly.
60         ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width;
61         dstRB -= (width << 2);
62 
63         if (width >= 8) {
64             vpmc.val[NEON_A] = vdup_n_u8(colorAlpha);
65             vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc));
66             vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc));
67             vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc));
68         }
69         do {
70             int w = width;
71             while (w >= 8) {
72                 uint8x8_t vmask = vld1_u8(mask);
73                 uint16x8_t vmask256 = SkAlpha255To256_neon8(vmask);
74                 uint16x8_t vscale;
75                 if constexpr (isTranslucent) {
76                     vscale = vsubw_u8(vdupq_n_u16(256),
77                             SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256));
78                 } else {
79                     vscale = vsubw_u8(vdupq_n_u16(256), vmask);
80                 }
81                 uint8x8x4_t vdev = vld4_u8((uint8_t*)device);
82 
83                 vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)
84                     + SkAlphaMul_neon8(vdev.val[NEON_A], vscale);
85                 vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256)
86                     + SkAlphaMul_neon8(vdev.val[NEON_R], vscale);
87                 vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256)
88                     + SkAlphaMul_neon8(vdev.val[NEON_G], vscale);
89                 vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256)
90                     + SkAlphaMul_neon8(vdev.val[NEON_B], vscale);
91 
92                 vst4_u8((uint8_t*)device, vdev);
93 
94                 mask += 8;
95                 device += 8;
96                 w -= 8;
97             }
98 
99             while (w-- > 0) {
100                 // These variables aren't actually vectors, but the names are consistent with
101                 // the above to make it easier to compare the operations.
102                 const U8CPU vmask = *mask++;
103                 const U16CPU vmask256 = SkAlpha255To256(vmask);
104                 U16CPU vscale;
105                 if constexpr (isTranslucent) {
106                     vscale = 256 - SkAlphaMulQ(colorAlpha, vmask256);
107                 } else {
108                     vscale = 256 - vmask;
109                 }
110                 *device = SkAlphaMulQ(pmc, vmask256)
111                         + SkAlphaMulQ(*device, vscale);
112                 device += 1;
113             }
114 
115             device = (uint32_t*)((char*)device + dstRB);
116             mask += mask_adjust;
117 
118         } while (--height != 0);
119     }
120 
blit_mask_d32_a8_general(SkPMColor * dst,size_t dstRB,const SkAlpha * mask,size_t maskRB,SkColor color,int w,int h)121     static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
122                                          const SkAlpha* mask, size_t maskRB,
123                                          SkColor color, int w, int h) {
124         blit_mask_d32_a8_neon<true>(dst, dstRB, mask, maskRB, color, w, h);
125     }
126 
127     // As above, but made slightly simpler by requiring that color is opaque.
blit_mask_d32_a8_opaque(SkPMColor * dst,size_t dstRB,const SkAlpha * mask,size_t maskRB,SkColor color,int w,int h)128     static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
129                                         const SkAlpha* mask, size_t maskRB,
130                                         SkColor color, int w, int h) {
131         blit_mask_d32_a8_neon<false>(dst, dstRB, mask, maskRB, color, w, h);
132     }
133 
134     // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
blit_mask_d32_a8_black(SkPMColor * dst,size_t dstRB,const SkAlpha * maskPtr,size_t maskRB,int width,int height)135     static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
136                                        const SkAlpha* maskPtr, size_t maskRB,
137                                        int width, int height) {
138         SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
139         const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
140 
141         // Nine patch may set maskRB to 0 to blit the same row repeatedly.
142         ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width;
143         dstRB -= (width << 2);
144         do {
145             int w = width;
146             while (w >= 8) {
147                 uint8x8_t vmask = vld1_u8(mask);
148                 uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask);
149                 uint8x8x4_t vdevice = vld4_u8((uint8_t*)device);
150 
151                 vdevice = SkAlphaMulQ_neon8(vdevice, vscale);
152                 vdevice.val[NEON_A] += vmask;
153 
154                 vst4_u8((uint8_t*)device, vdevice);
155 
156                 mask += 8;
157                 device += 8;
158                 w -= 8;
159             }
160             while (w-- > 0) {
161                 // These variables aren't actually vectors, but the names are consistent with
162                 // the above to make it easier to compare the operations.
163                 const U8CPU vmask = *mask++;
164                 const U16CPU vscale = 256 - vmask;
165                 *device = SkAlphaMulQ(*device, vscale) +
166                          (vmask << SK_A32_SHIFT);
167                 device += 1;
168             }
169             device = (uint32_t*)((char*)device + dstRB);
170             mask += mask_adjust;
171         } while (--height != 0);
172     }
173 
174 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
175     #include <lsxintrin.h>
176 
177     static __m128i SkAlphaMul_lsx(__m128i x, __m128i y) {
178         __m128i tmp = __lsx_vmul_h(x, y);
179         __m128i mask = __lsx_vreplgr2vr_h(0xff00);
180         return __lsx_vsrlri_h(__lsx_vand_v(tmp, mask), 8);
181     }
182 
183     template <bool isColor>
184     static void D32_A8_Opaque_Color_lsx(void* SK_RESTRICT dst, size_t dstRB,
185                                          const void* SK_RESTRICT maskPtr, size_t maskRB,
186                                          SkColor color, int width, int height) {
187         SkPMColor pmc = SkPreMultiplyColor(color);
188         SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
189         const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
190         __m128i vpmc_b = __lsx_vldi(0);
191         __m128i vpmc_g = __lsx_vldi(0);
192         __m128i vpmc_r = __lsx_vldi(0);
193         __m128i vpmc_a = __lsx_vldi(0);
194 
195         // Nine patch may set maskRB to 0 to blit the same row repeatedly.
196         ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width;
197         dstRB -= (width << 2);
198 
199         if (width >= 8) {
200             vpmc_b = __lsx_vreplgr2vr_h(SkGetPackedB32(pmc));
201             vpmc_g = __lsx_vreplgr2vr_h(SkGetPackedG32(pmc));
202             vpmc_r = __lsx_vreplgr2vr_h(SkGetPackedR32(pmc));
203             vpmc_a = __lsx_vreplgr2vr_h(SkGetPackedA32(pmc));
204         }
205 
206         const __m128i zeros = __lsx_vldi(0);
207         __m128i planar = __lsx_vldi(0);
208         planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0);
209         planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1);
210 
211         do{
212             int w = width;
213             while(w >= 8){
214                 __m128i lo = __lsx_vld(device, 0);         // bgra bgra bgra bgra
215                 __m128i hi = __lsx_vld(device, 16);        // BGRA BGRA BGRA BGRA
216                 lo = __lsx_vshuf_b(zeros, lo, planar);     // bbbb gggg rrrr aaaa
217                 hi = __lsx_vshuf_b(zeros, hi, planar);     // BBBB GGGG RRRR AAAA
218                 __m128i bg = __lsx_vilvl_w(hi, lo),        // bbbb BBBB gggg GGGG
219                         ra = __lsx_vilvh_w(hi, lo);        // rrrr RRRR aaaa AAAA
220 
221                 __m128i b = __lsx_vilvl_b(zeros, bg),      // _b_b _b_b _B_B _B_B
222                         g = __lsx_vilvh_b(zeros, bg),      // _g_g _g_g _G_G _G_G
223                         r = __lsx_vilvl_b(zeros, ra),      // _r_r _r_r _R_R _R_R
224                         a = __lsx_vilvh_b(zeros, ra);      // _a_a _a_a _A_A _A_A
225 
226                 __m128i vmask = __lsx_vld(mask, 0);
227                 vmask = __lsx_vilvl_b(zeros, vmask);
228                 __m128i vscale, vmask256 = __lsx_vadd_h(vmask, __lsx_vreplgr2vr_h(1));
229 
230                 if (isColor) {
231                     __m128i tmp = SkAlphaMul_lsx(vpmc_a, vmask256);
232                     vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), tmp);
233                 } else {
234                     vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), vmask);
235                 }
236 
237                 b = SkAlphaMul_lsx(vpmc_b, vmask256) + SkAlphaMul_lsx(b, vscale);
238                 g = SkAlphaMul_lsx(vpmc_g, vmask256) + SkAlphaMul_lsx(g, vscale);
239                 r = SkAlphaMul_lsx(vpmc_r, vmask256) + SkAlphaMul_lsx(r, vscale);
240                 a = SkAlphaMul_lsx(vpmc_a, vmask256) + SkAlphaMul_lsx(a, vscale);
241 
242                 bg = __lsx_vor_v(b, __lsx_vslli_h(g, 8));  // bgbg bgbg BGBG BGBG
243                 ra = __lsx_vor_v(r, __lsx_vslli_h(a, 8));  // rara rara RARA RARA
244                 lo = __lsx_vilvl_h(ra, bg);                // bgra bgra bgra bgra
245                 hi = __lsx_vilvh_h(ra, bg);                // BGRA BGRA BGRA BGRA
246 
247                 __lsx_vst(lo, device, 0);
248                 __lsx_vst(hi, device, 16);
249 
250                 mask += 8;
251                 device += 8;
252                 w -= 8;
253             }
254 
255             while (w--) {
256                 unsigned aa = *mask++;
257                 if (isColor) {
258                     *device = SkBlendARGB32(pmc, *device, aa);
259                 } else {
260                     *device = SkAlphaMulQ(pmc, SkAlpha255To256(aa))
261                         + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
262                 }
263                 device += 1;
264             }
265 
266             device = (uint32_t *)((char*)device + dstRB);
267             mask += mask_adjust;
268 
269         } while (--height != 0);
270     }
271 
272     static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
273                                          const SkAlpha* mask, size_t maskRB,
274                                          SkColor color, int w, int h) {
275         D32_A8_Opaque_Color_lsx<true>(dst, dstRB, mask, maskRB, color, w, h);
276     }
277 
278     static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
279                                          const SkAlpha* mask, size_t maskRB,
280                                          SkColor color, int w, int h) {
281         D32_A8_Opaque_Color_lsx<false>(dst, dstRB, mask, maskRB, color, w, h);
282     }
283 
284     // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
285     static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
286                                        const SkAlpha* maskPtr, size_t maskRB,
287                                        int width, int height) {
288         SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
289         const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
290 
291         // Nine patch may set maskRB to 0 to blit the same row repeatedly.
292         ptrdiff_t mask_adjust = (ptrdiff_t)maskRB - width;
293         dstRB -= (width << 2);
294         const __m128i zeros = __lsx_vldi(0);
295         __m128i planar = __lsx_vldi(0);
296         planar = __lsx_vinsgr2vr_d(planar, 0x0d0905010c080400, 0);
297         planar = __lsx_vinsgr2vr_d(planar, 0x0f0b07030e0a0602, 1);
298 
299         do {
300             int w = width;
301             while (w >= 8) {
302                 __m128i vmask = __lsx_vld(mask, 0);
303                 vmask = __lsx_vilvl_b(zeros, vmask);
304                 __m128i vscale = __lsx_vsub_h(__lsx_vreplgr2vr_h(256), vmask);
305                 __m128i lo = __lsx_vld(device, 0);         // bgra bgra bgra bgra
306                 __m128i hi = __lsx_vld(device, 16);        // BGRA BGRA BGRA BGRA
307                 lo = __lsx_vshuf_b(zeros, lo, planar);     // bbbb gggg rrrr aaaa
308                 hi = __lsx_vshuf_b(zeros, hi, planar);     // BBBB GGGG RRRR AAAA
309                 __m128i bg = __lsx_vilvl_w(hi, lo),        // bbbb BBBB gggg GGGG
310                         ra = __lsx_vilvh_w(hi, lo);        // rrrr RRRR aaaa AAAA
311 
312                 __m128i b = __lsx_vilvl_b(zeros, bg),      // _b_b _b_b _B_B _B_B
313                         g = __lsx_vilvh_b(zeros, bg),      // _g_g _g_g _G_G _G_G
314                         r = __lsx_vilvl_b(zeros, ra),      // _r_r _r_r _R_R _R_R
315                         a = __lsx_vilvh_b(zeros, ra);      // _a_a _a_a _A_A _A_A
316 
317                 b = SkAlphaMul_lsx(b, vscale);
318                 g = SkAlphaMul_lsx(g, vscale);
319                 r = SkAlphaMul_lsx(r, vscale);
320                 a = SkAlphaMul_lsx(a, vscale);
321 
322                 a += vmask;
323 
324                 bg = __lsx_vor_v(b, __lsx_vslli_h(g, 8));  // bgbg bgbg BGBG BGBG
325                 ra = __lsx_vor_v(r, __lsx_vslli_h(a, 8));  // rara rara RARA RARA
326                 lo = __lsx_vilvl_h(ra, bg);                // bgra bgra bgra bgra
327                 hi = __lsx_vilvh_h(ra, bg);                // BGRA BGRA BGRA BGRA
328 
329                 __lsx_vst(lo, device, 0);
330                 __lsx_vst(hi, device, 16);
331 
332                 mask += 8;
333                 device += 8;
334                 w -= 8;
335             }
336 
337             while (w-- > 0) {
338                 unsigned aa = *mask++;
339                 *device = (aa << SK_A32_SHIFT)
340                             + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
341                 device += 1;
342             }
343 
344             device = (uint32_t*)((char*)device + dstRB);
345             mask += mask_adjust;
346 
347         } while (--height != 0);
348     }
349 
350 #else
351     static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
352                                          const SkAlpha* mask, size_t maskRB,
353                                          SkColor color, int w, int h) {
354         auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
355         auto fn = [&](const Sk4px& d, const Sk4px& aa) {
356             //  = (s + d(1-sa))aa + d(1-aa)
357             //  = s*aa + d(1-sa*aa)
358             auto left  = s.approxMulDiv255(aa),
359                  right = d.approxMulDiv255(left.alphas().inv());
360             return left + right;  // This does not overflow (exhaustively checked).
361         };
362         while (h --> 0) {
363             Sk4px::MapDstAlpha(w, dst, mask, fn);
364             dst  +=  dstRB / sizeof(*dst);
365             mask += maskRB / sizeof(*mask);
366         }
367     }
368 
369     // As above, but made slightly simpler by requiring that color is opaque.
370     static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
371                                         const SkAlpha* mask, size_t maskRB,
372                                         SkColor color, int w, int h) {
373         SkASSERT(SkColorGetA(color) == 0xFF);
374         auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
375         auto fn = [&](const Sk4px& d, const Sk4px& aa) {
376             //  = (s + d(1-sa))aa + d(1-aa)
377             //  = s*aa + d(1-sa*aa)
378             //   ~~~>
379             //  = s*aa + d(1-aa)
380             return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv());
381         };
382         while (h --> 0) {
383             Sk4px::MapDstAlpha(w, dst, mask, fn);
384             dst  +=  dstRB / sizeof(*dst);
385             mask += maskRB / sizeof(*mask);
386         }
387     }
388 
389     // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
390     static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
391                                        const SkAlpha* mask, size_t maskRB,
392                                        int w, int h) {
393         auto fn = [](const Sk4px& d, const Sk4px& aa) {
394             //   = (s + d(1-sa))aa + d(1-aa)
395             //   = s*aa + d(1-sa*aa)
396             //   ~~~>
397             // a = 1*aa + d(1-1*aa) = aa + d(1-aa)
398             // c = 0*aa + d(1-1*aa) =      d(1-aa)
399             return (aa & Sk4px(skvx::byte16{0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255}))
400                  + d.approxMulDiv255(aa.inv());
401         };
402         while (h --> 0) {
403             Sk4px::MapDstAlpha(w, dst, mask, fn);
404             dst  +=  dstRB / sizeof(*dst);
405             mask += maskRB / sizeof(*mask);
406         }
407     }
408 #endif
409 
blit_mask_d32_a8(SkPMColor * dst,size_t dstRB,const SkAlpha * mask,size_t maskRB,SkColor color,int w,int h)410 /*not static*/ inline void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
411                                             const SkAlpha* mask, size_t maskRB,
412                                             SkColor color, int w, int h) {
413     if (color == SK_ColorBLACK) {
414         blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h);
415     } else if (SkColorGetA(color) == 0xFF) {
416         blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h);
417     } else {
418         blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h);
419     }
420 }
421 
422 }  // namespace SK_OPTS_NS
423 
424 #endif//SkBlitMask_opts_DEFINED
425