• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <limits.h>  // For LONG_MIN, LONG_MAX.
29 
30 #include "v8.h"
31 
32 #if defined(V8_TARGET_ARCH_MIPS)
33 
34 #include "bootstrapper.h"
35 #include "codegen.h"
36 #include "debug.h"
37 #include "runtime.h"
38 
39 namespace v8 {
40 namespace internal {
41 
MacroAssembler(Isolate * arg_isolate,void * buffer,int size)42 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
43     : Assembler(arg_isolate, buffer, size),
44       generating_stub_(false),
45       allow_stub_calls_(true),
46       has_frame_(false) {
47   if (isolate() != NULL) {
48     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
49                                   isolate());
50   }
51 }
52 
53 
LoadRoot(Register destination,Heap::RootListIndex index)54 void MacroAssembler::LoadRoot(Register destination,
55                               Heap::RootListIndex index) {
56   lw(destination, MemOperand(s6, index << kPointerSizeLog2));
57 }
58 
59 
LoadRoot(Register destination,Heap::RootListIndex index,Condition cond,Register src1,const Operand & src2)60 void MacroAssembler::LoadRoot(Register destination,
61                               Heap::RootListIndex index,
62                               Condition cond,
63                               Register src1, const Operand& src2) {
64   Branch(2, NegateCondition(cond), src1, src2);
65   lw(destination, MemOperand(s6, index << kPointerSizeLog2));
66 }
67 
68 
StoreRoot(Register source,Heap::RootListIndex index)69 void MacroAssembler::StoreRoot(Register source,
70                                Heap::RootListIndex index) {
71   sw(source, MemOperand(s6, index << kPointerSizeLog2));
72 }
73 
74 
StoreRoot(Register source,Heap::RootListIndex index,Condition cond,Register src1,const Operand & src2)75 void MacroAssembler::StoreRoot(Register source,
76                                Heap::RootListIndex index,
77                                Condition cond,
78                                Register src1, const Operand& src2) {
79   Branch(2, NegateCondition(cond), src1, src2);
80   sw(source, MemOperand(s6, index << kPointerSizeLog2));
81 }
82 
83 
LoadHeapObject(Register result,Handle<HeapObject> object)84 void MacroAssembler::LoadHeapObject(Register result,
85                                     Handle<HeapObject> object) {
86   if (isolate()->heap()->InNewSpace(*object)) {
87     Handle<JSGlobalPropertyCell> cell =
88         isolate()->factory()->NewJSGlobalPropertyCell(object);
89     li(result, Operand(cell));
90     lw(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset));
91   } else {
92     li(result, Operand(object));
93   }
94 }
95 
96 
97 // Push and pop all registers that can hold pointers.
PushSafepointRegisters()98 void MacroAssembler::PushSafepointRegisters() {
99   // Safepoints expect a block of kNumSafepointRegisters values on the
100   // stack, so adjust the stack for unsaved registers.
101   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
102   ASSERT(num_unsaved >= 0);
103   if (num_unsaved > 0) {
104     Subu(sp, sp, Operand(num_unsaved * kPointerSize));
105   }
106   MultiPush(kSafepointSavedRegisters);
107 }
108 
109 
PopSafepointRegisters()110 void MacroAssembler::PopSafepointRegisters() {
111   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
112   MultiPop(kSafepointSavedRegisters);
113   if (num_unsaved > 0) {
114     Addu(sp, sp, Operand(num_unsaved * kPointerSize));
115   }
116 }
117 
118 
PushSafepointRegistersAndDoubles()119 void MacroAssembler::PushSafepointRegistersAndDoubles() {
120   PushSafepointRegisters();
121   Subu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize));
122   for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) {
123     FPURegister reg = FPURegister::FromAllocationIndex(i);
124     sdc1(reg, MemOperand(sp, i * kDoubleSize));
125   }
126 }
127 
128 
PopSafepointRegistersAndDoubles()129 void MacroAssembler::PopSafepointRegistersAndDoubles() {
130   for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) {
131     FPURegister reg = FPURegister::FromAllocationIndex(i);
132     ldc1(reg, MemOperand(sp, i * kDoubleSize));
133   }
134   Addu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize));
135   PopSafepointRegisters();
136 }
137 
138 
StoreToSafepointRegistersAndDoublesSlot(Register src,Register dst)139 void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
140                                                              Register dst) {
141   sw(src, SafepointRegistersAndDoublesSlot(dst));
142 }
143 
144 
StoreToSafepointRegisterSlot(Register src,Register dst)145 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
146   sw(src, SafepointRegisterSlot(dst));
147 }
148 
149 
LoadFromSafepointRegisterSlot(Register dst,Register src)150 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
151   lw(dst, SafepointRegisterSlot(src));
152 }
153 
154 
SafepointRegisterStackIndex(int reg_code)155 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
156   // The registers are pushed starting with the highest encoding,
157   // which means that lowest encodings are closest to the stack pointer.
158   return kSafepointRegisterStackIndexMap[reg_code];
159 }
160 
161 
SafepointRegisterSlot(Register reg)162 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
163   return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
164 }
165 
166 
SafepointRegistersAndDoublesSlot(Register reg)167 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
168   UNIMPLEMENTED_MIPS();
169   // General purpose registers are pushed last on the stack.
170   int doubles_size = FPURegister::kNumAllocatableRegisters * kDoubleSize;
171   int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
172   return MemOperand(sp, doubles_size + register_offset);
173 }
174 
175 
InNewSpace(Register object,Register scratch,Condition cc,Label * branch)176 void MacroAssembler::InNewSpace(Register object,
177                                 Register scratch,
178                                 Condition cc,
179                                 Label* branch) {
180   ASSERT(cc == eq || cc == ne);
181   And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
182   Branch(branch, cc, scratch,
183          Operand(ExternalReference::new_space_start(isolate())));
184 }
185 
186 
RecordWriteField(Register object,int offset,Register value,Register dst,RAStatus ra_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check)187 void MacroAssembler::RecordWriteField(
188     Register object,
189     int offset,
190     Register value,
191     Register dst,
192     RAStatus ra_status,
193     SaveFPRegsMode save_fp,
194     RememberedSetAction remembered_set_action,
195     SmiCheck smi_check) {
196   ASSERT(!AreAliased(value, dst, t8, object));
197   // First, check if a write barrier is even needed. The tests below
198   // catch stores of Smis.
199   Label done;
200 
201   // Skip barrier if writing a smi.
202   if (smi_check == INLINE_SMI_CHECK) {
203     JumpIfSmi(value, &done);
204   }
205 
206   // Although the object register is tagged, the offset is relative to the start
207   // of the object, so so offset must be a multiple of kPointerSize.
208   ASSERT(IsAligned(offset, kPointerSize));
209 
210   Addu(dst, object, Operand(offset - kHeapObjectTag));
211   if (emit_debug_code()) {
212     Label ok;
213     And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
214     Branch(&ok, eq, t8, Operand(zero_reg));
215     stop("Unaligned cell in write barrier");
216     bind(&ok);
217   }
218 
219   RecordWrite(object,
220               dst,
221               value,
222               ra_status,
223               save_fp,
224               remembered_set_action,
225               OMIT_SMI_CHECK);
226 
227   bind(&done);
228 
229   // Clobber clobbered input registers when running with the debug-code flag
230   // turned on to provoke errors.
231   if (emit_debug_code()) {
232     li(value, Operand(BitCast<int32_t>(kZapValue + 4)));
233     li(dst, Operand(BitCast<int32_t>(kZapValue + 8)));
234   }
235 }
236 
237 
238 // Will clobber 4 registers: object, address, scratch, ip.  The
239 // register 'object' contains a heap object pointer.  The heap object
240 // tag is shifted away.
RecordWrite(Register object,Register address,Register value,RAStatus ra_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check)241 void MacroAssembler::RecordWrite(Register object,
242                                  Register address,
243                                  Register value,
244                                  RAStatus ra_status,
245                                  SaveFPRegsMode fp_mode,
246                                  RememberedSetAction remembered_set_action,
247                                  SmiCheck smi_check) {
248   ASSERT(!AreAliased(object, address, value, t8));
249   ASSERT(!AreAliased(object, address, value, t9));
250   // The compiled code assumes that record write doesn't change the
251   // context register, so we check that none of the clobbered
252   // registers are cp.
253   ASSERT(!address.is(cp) && !value.is(cp));
254 
255   if (emit_debug_code()) {
256     lw(at, MemOperand(address));
257     Assert(
258         eq, "Wrong address or value passed to RecordWrite", at, Operand(value));
259   }
260 
261   Label done;
262 
263   if (smi_check == INLINE_SMI_CHECK) {
264     ASSERT_EQ(0, kSmiTag);
265     JumpIfSmi(value, &done);
266   }
267 
268   CheckPageFlag(value,
269                 value,  // Used as scratch.
270                 MemoryChunk::kPointersToHereAreInterestingMask,
271                 eq,
272                 &done);
273   CheckPageFlag(object,
274                 value,  // Used as scratch.
275                 MemoryChunk::kPointersFromHereAreInterestingMask,
276                 eq,
277                 &done);
278 
279   // Record the actual write.
280   if (ra_status == kRAHasNotBeenSaved) {
281     push(ra);
282   }
283   RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
284   CallStub(&stub);
285   if (ra_status == kRAHasNotBeenSaved) {
286     pop(ra);
287   }
288 
289   bind(&done);
290 
291   // Clobber clobbered registers when running with the debug-code flag
292   // turned on to provoke errors.
293   if (emit_debug_code()) {
294     li(address, Operand(BitCast<int32_t>(kZapValue + 12)));
295     li(value, Operand(BitCast<int32_t>(kZapValue + 16)));
296   }
297 }
298 
299 
RememberedSetHelper(Register object,Register address,Register scratch,SaveFPRegsMode fp_mode,RememberedSetFinalAction and_then)300 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
301                                          Register address,
302                                          Register scratch,
303                                          SaveFPRegsMode fp_mode,
304                                          RememberedSetFinalAction and_then) {
305   Label done;
306   if (emit_debug_code()) {
307     Label ok;
308     JumpIfNotInNewSpace(object, scratch, &ok);
309     stop("Remembered set pointer is in new space");
310     bind(&ok);
311   }
312   // Load store buffer top.
313   ExternalReference store_buffer =
314       ExternalReference::store_buffer_top(isolate());
315   li(t8, Operand(store_buffer));
316   lw(scratch, MemOperand(t8));
317   // Store pointer to buffer and increment buffer top.
318   sw(address, MemOperand(scratch));
319   Addu(scratch, scratch, kPointerSize);
320   // Write back new top of buffer.
321   sw(scratch, MemOperand(t8));
322   // Call stub on end of buffer.
323   // Check for end of buffer.
324   And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
325   if (and_then == kFallThroughAtEnd) {
326     Branch(&done, eq, t8, Operand(zero_reg));
327   } else {
328     ASSERT(and_then == kReturnAtEnd);
329     Ret(eq, t8, Operand(zero_reg));
330   }
331   push(ra);
332   StoreBufferOverflowStub store_buffer_overflow =
333       StoreBufferOverflowStub(fp_mode);
334   CallStub(&store_buffer_overflow);
335   pop(ra);
336   bind(&done);
337   if (and_then == kReturnAtEnd) {
338     Ret();
339   }
340 }
341 
342 
343 // -----------------------------------------------------------------------------
344 // Allocation support.
345 
346 
CheckAccessGlobalProxy(Register holder_reg,Register scratch,Label * miss)347 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
348                                             Register scratch,
349                                             Label* miss) {
350   Label same_contexts;
351 
352   ASSERT(!holder_reg.is(scratch));
353   ASSERT(!holder_reg.is(at));
354   ASSERT(!scratch.is(at));
355 
356   // Load current lexical context from the stack frame.
357   lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
358   // In debug mode, make sure the lexical context is set.
359 #ifdef DEBUG
360   Check(ne, "we should not have an empty lexical context",
361       scratch, Operand(zero_reg));
362 #endif
363 
364   // Load the global context of the current context.
365   int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
366   lw(scratch, FieldMemOperand(scratch, offset));
367   lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
368 
369   // Check the context is a global context.
370   if (emit_debug_code()) {
371     // TODO(119): Avoid push(holder_reg)/pop(holder_reg).
372     push(holder_reg);  // Temporarily save holder on the stack.
373     // Read the first word and compare to the global_context_map.
374     lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
375     LoadRoot(at, Heap::kGlobalContextMapRootIndex);
376     Check(eq, "JSGlobalObject::global_context should be a global context.",
377           holder_reg, Operand(at));
378     pop(holder_reg);  // Restore holder.
379   }
380 
381   // Check if both contexts are the same.
382   lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
383   Branch(&same_contexts, eq, scratch, Operand(at));
384 
385   // Check the context is a global context.
386   if (emit_debug_code()) {
387     // TODO(119): Avoid push(holder_reg)/pop(holder_reg).
388     push(holder_reg);  // Temporarily save holder on the stack.
389     mov(holder_reg, at);  // Move at to its holding place.
390     LoadRoot(at, Heap::kNullValueRootIndex);
391     Check(ne, "JSGlobalProxy::context() should not be null.",
392           holder_reg, Operand(at));
393 
394     lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
395     LoadRoot(at, Heap::kGlobalContextMapRootIndex);
396     Check(eq, "JSGlobalObject::global_context should be a global context.",
397           holder_reg, Operand(at));
398     // Restore at is not needed. at is reloaded below.
399     pop(holder_reg);  // Restore holder.
400     // Restore at to holder's context.
401     lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
402   }
403 
404   // Check that the security token in the calling global object is
405   // compatible with the security token in the receiving global
406   // object.
407   int token_offset = Context::kHeaderSize +
408                      Context::SECURITY_TOKEN_INDEX * kPointerSize;
409 
410   lw(scratch, FieldMemOperand(scratch, token_offset));
411   lw(at, FieldMemOperand(at, token_offset));
412   Branch(miss, ne, scratch, Operand(at));
413 
414   bind(&same_contexts);
415 }
416 
417 
GetNumberHash(Register reg0,Register scratch)418 void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
419   // First of all we assign the hash seed to scratch.
420   LoadRoot(scratch, Heap::kHashSeedRootIndex);
421   SmiUntag(scratch);
422 
423   // Xor original key with a seed.
424   xor_(reg0, reg0, scratch);
425 
426   // Compute the hash code from the untagged key.  This must be kept in sync
427   // with ComputeIntegerHash in utils.h.
428   //
429   // hash = ~hash + (hash << 15);
430   nor(scratch, reg0, zero_reg);
431   sll(at, reg0, 15);
432   addu(reg0, scratch, at);
433 
434   // hash = hash ^ (hash >> 12);
435   srl(at, reg0, 12);
436   xor_(reg0, reg0, at);
437 
438   // hash = hash + (hash << 2);
439   sll(at, reg0, 2);
440   addu(reg0, reg0, at);
441 
442   // hash = hash ^ (hash >> 4);
443   srl(at, reg0, 4);
444   xor_(reg0, reg0, at);
445 
446   // hash = hash * 2057;
447   sll(scratch, reg0, 11);
448   sll(at, reg0, 3);
449   addu(reg0, reg0, at);
450   addu(reg0, reg0, scratch);
451 
452   // hash = hash ^ (hash >> 16);
453   srl(at, reg0, 16);
454   xor_(reg0, reg0, at);
455 }
456 
457 
LoadFromNumberDictionary(Label * miss,Register elements,Register key,Register result,Register reg0,Register reg1,Register reg2)458 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
459                                               Register elements,
460                                               Register key,
461                                               Register result,
462                                               Register reg0,
463                                               Register reg1,
464                                               Register reg2) {
465   // Register use:
466   //
467   // elements - holds the slow-case elements of the receiver on entry.
468   //            Unchanged unless 'result' is the same register.
469   //
470   // key      - holds the smi key on entry.
471   //            Unchanged unless 'result' is the same register.
472   //
473   //
474   // result   - holds the result on exit if the load succeeded.
475   //            Allowed to be the same as 'key' or 'result'.
476   //            Unchanged on bailout so 'key' or 'result' can be used
477   //            in further computation.
478   //
479   // Scratch registers:
480   //
481   // reg0 - holds the untagged key on entry and holds the hash once computed.
482   //
483   // reg1 - Used to hold the capacity mask of the dictionary.
484   //
485   // reg2 - Used for the index into the dictionary.
486   // at   - Temporary (avoid MacroAssembler instructions also using 'at').
487   Label done;
488 
489   GetNumberHash(reg0, reg1);
490 
491   // Compute the capacity mask.
492   lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
493   sra(reg1, reg1, kSmiTagSize);
494   Subu(reg1, reg1, Operand(1));
495 
496   // Generate an unrolled loop that performs a few probes before giving up.
497   static const int kProbes = 4;
498   for (int i = 0; i < kProbes; i++) {
499     // Use reg2 for index calculations and keep the hash intact in reg0.
500     mov(reg2, reg0);
501     // Compute the masked index: (hash + i + i * i) & mask.
502     if (i > 0) {
503       Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
504     }
505     and_(reg2, reg2, reg1);
506 
507     // Scale the index by multiplying by the element size.
508     ASSERT(SeededNumberDictionary::kEntrySize == 3);
509     sll(at, reg2, 1);  // 2x.
510     addu(reg2, reg2, at);  // reg2 = reg2 * 3.
511 
512     // Check if the key is identical to the name.
513     sll(at, reg2, kPointerSizeLog2);
514     addu(reg2, elements, at);
515 
516     lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
517     if (i != kProbes - 1) {
518       Branch(&done, eq, key, Operand(at));
519     } else {
520       Branch(miss, ne, key, Operand(at));
521     }
522   }
523 
524   bind(&done);
525   // Check that the value is a normal property.
526   // reg2: elements + (index * kPointerSize).
527   const int kDetailsOffset =
528       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
529   lw(reg1, FieldMemOperand(reg2, kDetailsOffset));
530   And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
531   Branch(miss, ne, at, Operand(zero_reg));
532 
533   // Get the value at the masked, scaled index and return.
534   const int kValueOffset =
535       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
536   lw(result, FieldMemOperand(reg2, kValueOffset));
537 }
538 
539 
540 // ---------------------------------------------------------------------------
541 // Instruction macros.
542 
Addu(Register rd,Register rs,const Operand & rt)543 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
544   if (rt.is_reg()) {
545     addu(rd, rs, rt.rm());
546   } else {
547     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
548       addiu(rd, rs, rt.imm32_);
549     } else {
550       // li handles the relocation.
551       ASSERT(!rs.is(at));
552       li(at, rt);
553       addu(rd, rs, at);
554     }
555   }
556 }
557 
558 
Subu(Register rd,Register rs,const Operand & rt)559 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
560   if (rt.is_reg()) {
561     subu(rd, rs, rt.rm());
562   } else {
563     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
564       addiu(rd, rs, -rt.imm32_);  // No subiu instr, use addiu(x, y, -imm).
565     } else {
566       // li handles the relocation.
567       ASSERT(!rs.is(at));
568       li(at, rt);
569       subu(rd, rs, at);
570     }
571   }
572 }
573 
574 
Mul(Register rd,Register rs,const Operand & rt)575 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
576   if (rt.is_reg()) {
577     if (kArchVariant == kLoongson) {
578       mult(rs, rt.rm());
579       mflo(rd);
580     } else {
581       mul(rd, rs, rt.rm());
582     }
583   } else {
584     // li handles the relocation.
585     ASSERT(!rs.is(at));
586     li(at, rt);
587     if (kArchVariant == kLoongson) {
588       mult(rs, at);
589       mflo(rd);
590     } else {
591       mul(rd, rs, at);
592     }
593   }
594 }
595 
596 
Mult(Register rs,const Operand & rt)597 void MacroAssembler::Mult(Register rs, const Operand& rt) {
598   if (rt.is_reg()) {
599     mult(rs, rt.rm());
600   } else {
601     // li handles the relocation.
602     ASSERT(!rs.is(at));
603     li(at, rt);
604     mult(rs, at);
605   }
606 }
607 
608 
Multu(Register rs,const Operand & rt)609 void MacroAssembler::Multu(Register rs, const Operand& rt) {
610   if (rt.is_reg()) {
611     multu(rs, rt.rm());
612   } else {
613     // li handles the relocation.
614     ASSERT(!rs.is(at));
615     li(at, rt);
616     multu(rs, at);
617   }
618 }
619 
620 
Div(Register rs,const Operand & rt)621 void MacroAssembler::Div(Register rs, const Operand& rt) {
622   if (rt.is_reg()) {
623     div(rs, rt.rm());
624   } else {
625     // li handles the relocation.
626     ASSERT(!rs.is(at));
627     li(at, rt);
628     div(rs, at);
629   }
630 }
631 
632 
Divu(Register rs,const Operand & rt)633 void MacroAssembler::Divu(Register rs, const Operand& rt) {
634   if (rt.is_reg()) {
635     divu(rs, rt.rm());
636   } else {
637     // li handles the relocation.
638     ASSERT(!rs.is(at));
639     li(at, rt);
640     divu(rs, at);
641   }
642 }
643 
644 
And(Register rd,Register rs,const Operand & rt)645 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
646   if (rt.is_reg()) {
647     and_(rd, rs, rt.rm());
648   } else {
649     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
650       andi(rd, rs, rt.imm32_);
651     } else {
652       // li handles the relocation.
653       ASSERT(!rs.is(at));
654       li(at, rt);
655       and_(rd, rs, at);
656     }
657   }
658 }
659 
660 
Or(Register rd,Register rs,const Operand & rt)661 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
662   if (rt.is_reg()) {
663     or_(rd, rs, rt.rm());
664   } else {
665     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
666       ori(rd, rs, rt.imm32_);
667     } else {
668       // li handles the relocation.
669       ASSERT(!rs.is(at));
670       li(at, rt);
671       or_(rd, rs, at);
672     }
673   }
674 }
675 
676 
Xor(Register rd,Register rs,const Operand & rt)677 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
678   if (rt.is_reg()) {
679     xor_(rd, rs, rt.rm());
680   } else {
681     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
682       xori(rd, rs, rt.imm32_);
683     } else {
684       // li handles the relocation.
685       ASSERT(!rs.is(at));
686       li(at, rt);
687       xor_(rd, rs, at);
688     }
689   }
690 }
691 
692 
Nor(Register rd,Register rs,const Operand & rt)693 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
694   if (rt.is_reg()) {
695     nor(rd, rs, rt.rm());
696   } else {
697     // li handles the relocation.
698     ASSERT(!rs.is(at));
699     li(at, rt);
700     nor(rd, rs, at);
701   }
702 }
703 
704 
Neg(Register rs,const Operand & rt)705 void MacroAssembler::Neg(Register rs, const Operand& rt) {
706   ASSERT(rt.is_reg());
707   ASSERT(!at.is(rs));
708   ASSERT(!at.is(rt.rm()));
709   li(at, -1);
710   xor_(rs, rt.rm(), at);
711 }
712 
713 
Slt(Register rd,Register rs,const Operand & rt)714 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
715   if (rt.is_reg()) {
716     slt(rd, rs, rt.rm());
717   } else {
718     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
719       slti(rd, rs, rt.imm32_);
720     } else {
721       // li handles the relocation.
722       ASSERT(!rs.is(at));
723       li(at, rt);
724       slt(rd, rs, at);
725     }
726   }
727 }
728 
729 
Sltu(Register rd,Register rs,const Operand & rt)730 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
731   if (rt.is_reg()) {
732     sltu(rd, rs, rt.rm());
733   } else {
734     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
735       sltiu(rd, rs, rt.imm32_);
736     } else {
737       // li handles the relocation.
738       ASSERT(!rs.is(at));
739       li(at, rt);
740       sltu(rd, rs, at);
741     }
742   }
743 }
744 
745 
Ror(Register rd,Register rs,const Operand & rt)746 void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
747   if (kArchVariant == kMips32r2) {
748     if (rt.is_reg()) {
749       rotrv(rd, rs, rt.rm());
750     } else {
751       rotr(rd, rs, rt.imm32_);
752     }
753   } else {
754     if (rt.is_reg()) {
755       subu(at, zero_reg, rt.rm());
756       sllv(at, rs, at);
757       srlv(rd, rs, rt.rm());
758       or_(rd, rd, at);
759     } else {
760       if (rt.imm32_ == 0) {
761         srl(rd, rs, 0);
762       } else {
763         srl(at, rs, rt.imm32_);
764         sll(rd, rs, (0x20 - rt.imm32_) & 0x1f);
765         or_(rd, rd, at);
766       }
767     }
768   }
769 }
770 
771 //------------Pseudo-instructions-------------
772 
li(Register rd,Operand j,LiFlags mode)773 void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
774   ASSERT(!j.is_reg());
775   BlockTrampolinePoolScope block_trampoline_pool(this);
776   if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
777     // Normal load of an immediate value which does not need Relocation Info.
778     if (is_int16(j.imm32_)) {
779       addiu(rd, zero_reg, j.imm32_);
780     } else if (!(j.imm32_ & kHiMask)) {
781       ori(rd, zero_reg, j.imm32_);
782     } else if (!(j.imm32_ & kImm16Mask)) {
783       lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
784     } else {
785       lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
786       ori(rd, rd, (j.imm32_ & kImm16Mask));
787     }
788   } else {
789     if (MustUseReg(j.rmode_)) {
790       RecordRelocInfo(j.rmode_, j.imm32_);
791     }
792     // We always need the same number of instructions as we may need to patch
793     // this code to load another value which may need 2 instructions to load.
794     lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
795     ori(rd, rd, (j.imm32_ & kImm16Mask));
796   }
797 }
798 
799 
MultiPush(RegList regs)800 void MacroAssembler::MultiPush(RegList regs) {
801   int16_t num_to_push = NumberOfBitsSet(regs);
802   int16_t stack_offset = num_to_push * kPointerSize;
803 
804   Subu(sp, sp, Operand(stack_offset));
805   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
806     if ((regs & (1 << i)) != 0) {
807       stack_offset -= kPointerSize;
808       sw(ToRegister(i), MemOperand(sp, stack_offset));
809     }
810   }
811 }
812 
813 
MultiPushReversed(RegList regs)814 void MacroAssembler::MultiPushReversed(RegList regs) {
815   int16_t num_to_push = NumberOfBitsSet(regs);
816   int16_t stack_offset = num_to_push * kPointerSize;
817 
818   Subu(sp, sp, Operand(stack_offset));
819   for (int16_t i = 0; i < kNumRegisters; i++) {
820     if ((regs & (1 << i)) != 0) {
821       stack_offset -= kPointerSize;
822       sw(ToRegister(i), MemOperand(sp, stack_offset));
823     }
824   }
825 }
826 
827 
MultiPop(RegList regs)828 void MacroAssembler::MultiPop(RegList regs) {
829   int16_t stack_offset = 0;
830 
831   for (int16_t i = 0; i < kNumRegisters; i++) {
832     if ((regs & (1 << i)) != 0) {
833       lw(ToRegister(i), MemOperand(sp, stack_offset));
834       stack_offset += kPointerSize;
835     }
836   }
837   addiu(sp, sp, stack_offset);
838 }
839 
840 
MultiPopReversed(RegList regs)841 void MacroAssembler::MultiPopReversed(RegList regs) {
842   int16_t stack_offset = 0;
843 
844   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
845     if ((regs & (1 << i)) != 0) {
846       lw(ToRegister(i), MemOperand(sp, stack_offset));
847       stack_offset += kPointerSize;
848     }
849   }
850   addiu(sp, sp, stack_offset);
851 }
852 
853 
MultiPushFPU(RegList regs)854 void MacroAssembler::MultiPushFPU(RegList regs) {
855   CpuFeatures::Scope scope(FPU);
856   int16_t num_to_push = NumberOfBitsSet(regs);
857   int16_t stack_offset = num_to_push * kDoubleSize;
858 
859   Subu(sp, sp, Operand(stack_offset));
860   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
861     if ((regs & (1 << i)) != 0) {
862       stack_offset -= kDoubleSize;
863       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
864     }
865   }
866 }
867 
868 
MultiPushReversedFPU(RegList regs)869 void MacroAssembler::MultiPushReversedFPU(RegList regs) {
870   CpuFeatures::Scope scope(FPU);
871   int16_t num_to_push = NumberOfBitsSet(regs);
872   int16_t stack_offset = num_to_push * kDoubleSize;
873 
874   Subu(sp, sp, Operand(stack_offset));
875   for (int16_t i = 0; i < kNumRegisters; i++) {
876     if ((regs & (1 << i)) != 0) {
877       stack_offset -= kDoubleSize;
878       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
879     }
880   }
881 }
882 
883 
MultiPopFPU(RegList regs)884 void MacroAssembler::MultiPopFPU(RegList regs) {
885   CpuFeatures::Scope scope(FPU);
886   int16_t stack_offset = 0;
887 
888   for (int16_t i = 0; i < kNumRegisters; i++) {
889     if ((regs & (1 << i)) != 0) {
890       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
891       stack_offset += kDoubleSize;
892     }
893   }
894   addiu(sp, sp, stack_offset);
895 }
896 
897 
MultiPopReversedFPU(RegList regs)898 void MacroAssembler::MultiPopReversedFPU(RegList regs) {
899   CpuFeatures::Scope scope(FPU);
900   int16_t stack_offset = 0;
901 
902   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
903     if ((regs & (1 << i)) != 0) {
904       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
905       stack_offset += kDoubleSize;
906     }
907   }
908   addiu(sp, sp, stack_offset);
909 }
910 
911 
FlushICache(Register address,unsigned instructions)912 void MacroAssembler::FlushICache(Register address, unsigned instructions) {
913   RegList saved_regs = kJSCallerSaved | ra.bit();
914   MultiPush(saved_regs);
915   AllowExternalCallThatCantCauseGC scope(this);
916 
917   // Save to a0 in case address == t0.
918   Move(a0, address);
919   PrepareCallCFunction(2, t0);
920 
921   li(a1, instructions * kInstrSize);
922   CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
923   MultiPop(saved_regs);
924 }
925 
926 
Ext(Register rt,Register rs,uint16_t pos,uint16_t size)927 void MacroAssembler::Ext(Register rt,
928                          Register rs,
929                          uint16_t pos,
930                          uint16_t size) {
931   ASSERT(pos < 32);
932   ASSERT(pos + size < 33);
933 
934   if (kArchVariant == kMips32r2) {
935     ext_(rt, rs, pos, size);
936   } else {
937     // Move rs to rt and shift it left then right to get the
938     // desired bitfield on the right side and zeroes on the left.
939     int shift_left = 32 - (pos + size);
940     sll(rt, rs, shift_left);  // Acts as a move if shift_left == 0.
941 
942     int shift_right = 32 - size;
943     if (shift_right > 0) {
944       srl(rt, rt, shift_right);
945     }
946   }
947 }
948 
949 
Ins(Register rt,Register rs,uint16_t pos,uint16_t size)950 void MacroAssembler::Ins(Register rt,
951                          Register rs,
952                          uint16_t pos,
953                          uint16_t size) {
954   ASSERT(pos < 32);
955   ASSERT(pos + size <= 32);
956   ASSERT(size != 0);
957 
958   if (kArchVariant == kMips32r2) {
959     ins_(rt, rs, pos, size);
960   } else {
961     ASSERT(!rt.is(t8) && !rs.is(t8));
962     Subu(at, zero_reg, Operand(1));
963     srl(at, at, 32 - size);
964     and_(t8, rs, at);
965     sll(t8, t8, pos);
966     sll(at, at, pos);
967     nor(at, at, zero_reg);
968     and_(at, rt, at);
969     or_(rt, t8, at);
970   }
971 }
972 
973 
Cvt_d_uw(FPURegister fd,FPURegister fs,FPURegister scratch)974 void MacroAssembler::Cvt_d_uw(FPURegister fd,
975                               FPURegister fs,
976                               FPURegister scratch) {
977   // Move the data from fs to t8.
978   mfc1(t8, fs);
979   Cvt_d_uw(fd, t8, scratch);
980 }
981 
982 
Cvt_d_uw(FPURegister fd,Register rs,FPURegister scratch)983 void MacroAssembler::Cvt_d_uw(FPURegister fd,
984                               Register rs,
985                               FPURegister scratch) {
986   // Convert rs to a FP value in fd (and fd + 1).
987   // We do this by converting rs minus the MSB to avoid sign conversion,
988   // then adding 2^31 to the result (if needed).
989 
990   ASSERT(!fd.is(scratch));
991   ASSERT(!rs.is(t9));
992   ASSERT(!rs.is(at));
993 
994   // Save rs's MSB to t9.
995   Ext(t9, rs, 31, 1);
996   // Remove rs's MSB.
997   Ext(at, rs, 0, 31);
998   // Move the result to fd.
999   mtc1(at, fd);
1000 
1001   // Convert fd to a real FP value.
1002   cvt_d_w(fd, fd);
1003 
1004   Label conversion_done;
1005 
1006   // If rs's MSB was 0, it's done.
1007   // Otherwise we need to add that to the FP register.
1008   Branch(&conversion_done, eq, t9, Operand(zero_reg));
1009 
1010   // Load 2^31 into f20 as its float representation.
1011   li(at, 0x41E00000);
1012   mtc1(at, FPURegister::from_code(scratch.code() + 1));
1013   mtc1(zero_reg, scratch);
1014   // Add it to fd.
1015   add_d(fd, fd, scratch);
1016 
1017   bind(&conversion_done);
1018 }
1019 
1020 
Trunc_uw_d(FPURegister fd,FPURegister fs,FPURegister scratch)1021 void MacroAssembler::Trunc_uw_d(FPURegister fd,
1022                                 FPURegister fs,
1023                                 FPURegister scratch) {
1024   Trunc_uw_d(fs, t8, scratch);
1025   mtc1(t8, fd);
1026 }
1027 
Trunc_w_d(FPURegister fd,FPURegister fs)1028 void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
1029   if (kArchVariant == kLoongson && fd.is(fs)) {
1030     mfc1(t8, FPURegister::from_code(fs.code() + 1));
1031     trunc_w_d(fd, fs);
1032     mtc1(t8, FPURegister::from_code(fs.code() + 1));
1033   } else {
1034     trunc_w_d(fd, fs);
1035   }
1036 }
1037 
Round_w_d(FPURegister fd,FPURegister fs)1038 void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
1039   if (kArchVariant == kLoongson && fd.is(fs)) {
1040     mfc1(t8, FPURegister::from_code(fs.code() + 1));
1041     round_w_d(fd, fs);
1042     mtc1(t8, FPURegister::from_code(fs.code() + 1));
1043   } else {
1044     round_w_d(fd, fs);
1045   }
1046 }
1047 
1048 
Floor_w_d(FPURegister fd,FPURegister fs)1049 void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
1050   if (kArchVariant == kLoongson && fd.is(fs)) {
1051     mfc1(t8, FPURegister::from_code(fs.code() + 1));
1052     floor_w_d(fd, fs);
1053     mtc1(t8, FPURegister::from_code(fs.code() + 1));
1054   } else {
1055     floor_w_d(fd, fs);
1056   }
1057 }
1058 
1059 
Ceil_w_d(FPURegister fd,FPURegister fs)1060 void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
1061   if (kArchVariant == kLoongson && fd.is(fs)) {
1062     mfc1(t8, FPURegister::from_code(fs.code() + 1));
1063     ceil_w_d(fd, fs);
1064     mtc1(t8, FPURegister::from_code(fs.code() + 1));
1065   } else {
1066     ceil_w_d(fd, fs);
1067   }
1068 }
1069 
1070 
Trunc_uw_d(FPURegister fd,Register rs,FPURegister scratch)1071 void MacroAssembler::Trunc_uw_d(FPURegister fd,
1072                                 Register rs,
1073                                 FPURegister scratch) {
1074   ASSERT(!fd.is(scratch));
1075   ASSERT(!rs.is(at));
1076 
1077   // Load 2^31 into scratch as its float representation.
1078   li(at, 0x41E00000);
1079   mtc1(at, FPURegister::from_code(scratch.code() + 1));
1080   mtc1(zero_reg, scratch);
1081   // Test if scratch > fd.
1082   // If fd < 2^31 we can convert it normally.
1083   Label simple_convert;
1084   BranchF(&simple_convert, NULL, lt, fd, scratch);
1085 
1086   // First we subtract 2^31 from fd, then trunc it to rs
1087   // and add 2^31 to rs.
1088   sub_d(scratch, fd, scratch);
1089   trunc_w_d(scratch, scratch);
1090   mfc1(rs, scratch);
1091   Or(rs, rs, 1 << 31);
1092 
1093   Label done;
1094   Branch(&done);
1095   // Simple conversion.
1096   bind(&simple_convert);
1097   trunc_w_d(scratch, fd);
1098   mfc1(rs, scratch);
1099 
1100   bind(&done);
1101 }
1102 
1103 
BranchF(Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2,BranchDelaySlot bd)1104 void MacroAssembler::BranchF(Label* target,
1105                              Label* nan,
1106                              Condition cc,
1107                              FPURegister cmp1,
1108                              FPURegister cmp2,
1109                              BranchDelaySlot bd) {
1110   if (cc == al) {
1111     Branch(bd, target);
1112     return;
1113   }
1114 
1115   ASSERT(nan || target);
1116   // Check for unordered (NaN) cases.
1117   if (nan) {
1118     c(UN, D, cmp1, cmp2);
1119     bc1t(nan);
1120   }
1121 
1122   if (target) {
1123     // Here NaN cases were either handled by this function or are assumed to
1124     // have been handled by the caller.
1125     // Unsigned conditions are treated as their signed counterpart.
1126     switch (cc) {
1127       case Uless:
1128       case less:
1129         c(OLT, D, cmp1, cmp2);
1130         bc1t(target);
1131         break;
1132       case Ugreater:
1133       case greater:
1134         c(ULE, D, cmp1, cmp2);
1135         bc1f(target);
1136         break;
1137       case Ugreater_equal:
1138       case greater_equal:
1139         c(ULT, D, cmp1, cmp2);
1140         bc1f(target);
1141         break;
1142       case Uless_equal:
1143       case less_equal:
1144         c(OLE, D, cmp1, cmp2);
1145         bc1t(target);
1146         break;
1147       case eq:
1148         c(EQ, D, cmp1, cmp2);
1149         bc1t(target);
1150         break;
1151       case ne:
1152         c(EQ, D, cmp1, cmp2);
1153         bc1f(target);
1154         break;
1155       default:
1156         CHECK(0);
1157     };
1158   }
1159 
1160   if (bd == PROTECT) {
1161     nop();
1162   }
1163 }
1164 
1165 
Move(FPURegister dst,double imm)1166 void MacroAssembler::Move(FPURegister dst, double imm) {
1167   ASSERT(CpuFeatures::IsEnabled(FPU));
1168   static const DoubleRepresentation minus_zero(-0.0);
1169   static const DoubleRepresentation zero(0.0);
1170   DoubleRepresentation value(imm);
1171   // Handle special values first.
1172   bool force_load = dst.is(kDoubleRegZero);
1173   if (value.bits == zero.bits && !force_load) {
1174     mov_d(dst, kDoubleRegZero);
1175   } else if (value.bits == minus_zero.bits && !force_load) {
1176     neg_d(dst, kDoubleRegZero);
1177   } else {
1178     uint32_t lo, hi;
1179     DoubleAsTwoUInt32(imm, &lo, &hi);
1180     // Move the low part of the double into the lower of the corresponding FPU
1181     // register of FPU register pair.
1182     if (lo != 0) {
1183       li(at, Operand(lo));
1184       mtc1(at, dst);
1185     } else {
1186       mtc1(zero_reg, dst);
1187     }
1188     // Move the high part of the double into the higher of the corresponding FPU
1189     // register of FPU register pair.
1190     if (hi != 0) {
1191       li(at, Operand(hi));
1192       mtc1(at, dst.high());
1193     } else {
1194       mtc1(zero_reg, dst.high());
1195     }
1196   }
1197 }
1198 
1199 
Movz(Register rd,Register rs,Register rt)1200 void MacroAssembler::Movz(Register rd, Register rs, Register rt) {
1201   if (kArchVariant == kLoongson) {
1202     Label done;
1203     Branch(&done, ne, rt, Operand(zero_reg));
1204     mov(rd, rs);
1205     bind(&done);
1206   } else {
1207     movz(rd, rs, rt);
1208   }
1209 }
1210 
1211 
Movn(Register rd,Register rs,Register rt)1212 void MacroAssembler::Movn(Register rd, Register rs, Register rt) {
1213   if (kArchVariant == kLoongson) {
1214     Label done;
1215     Branch(&done, eq, rt, Operand(zero_reg));
1216     mov(rd, rs);
1217     bind(&done);
1218   } else {
1219     movn(rd, rs, rt);
1220   }
1221 }
1222 
1223 
Movt(Register rd,Register rs,uint16_t cc)1224 void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) {
1225   if (kArchVariant == kLoongson) {
1226     // Tests an FP condition code and then conditionally move rs to rd.
1227     // We do not currently use any FPU cc bit other than bit 0.
1228     ASSERT(cc == 0);
1229     ASSERT(!(rs.is(t8) || rd.is(t8)));
1230     Label done;
1231     Register scratch = t8;
1232     // For testing purposes we need to fetch content of the FCSR register and
1233     // than test its cc (floating point condition code) bit (for cc = 0, it is
1234     // 24. bit of the FCSR).
1235     cfc1(scratch, FCSR);
1236     // For the MIPS I, II and III architectures, the contents of scratch is
1237     // UNPREDICTABLE for the instruction immediately following CFC1.
1238     nop();
1239     srl(scratch, scratch, 16);
1240     andi(scratch, scratch, 0x0080);
1241     Branch(&done, eq, scratch, Operand(zero_reg));
1242     mov(rd, rs);
1243     bind(&done);
1244   } else {
1245     movt(rd, rs, cc);
1246   }
1247 }
1248 
1249 
Movf(Register rd,Register rs,uint16_t cc)1250 void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) {
1251   if (kArchVariant == kLoongson) {
1252     // Tests an FP condition code and then conditionally move rs to rd.
1253     // We do not currently use any FPU cc bit other than bit 0.
1254     ASSERT(cc == 0);
1255     ASSERT(!(rs.is(t8) || rd.is(t8)));
1256     Label done;
1257     Register scratch = t8;
1258     // For testing purposes we need to fetch content of the FCSR register and
1259     // than test its cc (floating point condition code) bit (for cc = 0, it is
1260     // 24. bit of the FCSR).
1261     cfc1(scratch, FCSR);
1262     // For the MIPS I, II and III architectures, the contents of scratch is
1263     // UNPREDICTABLE for the instruction immediately following CFC1.
1264     nop();
1265     srl(scratch, scratch, 16);
1266     andi(scratch, scratch, 0x0080);
1267     Branch(&done, ne, scratch, Operand(zero_reg));
1268     mov(rd, rs);
1269     bind(&done);
1270   } else {
1271     movf(rd, rs, cc);
1272   }
1273 }
1274 
1275 
Clz(Register rd,Register rs)1276 void MacroAssembler::Clz(Register rd, Register rs) {
1277   if (kArchVariant == kLoongson) {
1278     ASSERT(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9)));
1279     Register mask = t8;
1280     Register scratch = t9;
1281     Label loop, end;
1282     mov(at, rs);
1283     mov(rd, zero_reg);
1284     lui(mask, 0x8000);
1285     bind(&loop);
1286     and_(scratch, at, mask);
1287     Branch(&end, ne, scratch, Operand(zero_reg));
1288     addiu(rd, rd, 1);
1289     Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT);
1290     srl(mask, mask, 1);
1291     bind(&end);
1292   } else {
1293     clz(rd, rs);
1294   }
1295 }
1296 
1297 
1298 // Tries to get a signed int32 out of a double precision floating point heap
1299 // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
1300 // 32bits signed integer range.
1301 // This method implementation differs from the ARM version for performance
1302 // reasons.
ConvertToInt32(Register source,Register dest,Register scratch,Register scratch2,FPURegister double_scratch,Label * not_int32)1303 void MacroAssembler::ConvertToInt32(Register source,
1304                                     Register dest,
1305                                     Register scratch,
1306                                     Register scratch2,
1307                                     FPURegister double_scratch,
1308                                     Label *not_int32) {
1309   Label right_exponent, done;
1310   // Get exponent word (ENDIAN issues).
1311   lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
1312   // Get exponent alone in scratch2.
1313   And(scratch2, scratch, Operand(HeapNumber::kExponentMask));
1314   // Load dest with zero.  We use this either for the final shift or
1315   // for the answer.
1316   mov(dest, zero_reg);
1317   // Check whether the exponent matches a 32 bit signed int that is not a Smi.
1318   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).  This is
1319   // the exponent that we are fastest at and also the highest exponent we can
1320   // handle here.
1321   const uint32_t non_smi_exponent =
1322       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1323   // If we have a match of the int32-but-not-Smi exponent then skip some logic.
1324   Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent));
1325   // If the exponent is higher than that then go to not_int32 case.  This
1326   // catches numbers that don't fit in a signed int32, infinities and NaNs.
1327   Branch(not_int32, gt, scratch2, Operand(non_smi_exponent));
1328 
1329   // We know the exponent is smaller than 30 (biased).  If it is less than
1330   // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e.
1331   // it rounds to zero.
1332   const uint32_t zero_exponent =
1333       (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
1334   Subu(scratch2, scratch2, Operand(zero_exponent));
1335   // Dest already has a Smi zero.
1336   Branch(&done, lt, scratch2, Operand(zero_reg));
1337   if (!CpuFeatures::IsSupported(FPU)) {
1338     // We have a shifted exponent between 0 and 30 in scratch2.
1339     srl(dest, scratch2, HeapNumber::kExponentShift);
1340     // We now have the exponent in dest.  Subtract from 30 to get
1341     // how much to shift down.
1342     li(at, Operand(30));
1343     subu(dest, at, dest);
1344   }
1345   bind(&right_exponent);
1346   if (CpuFeatures::IsSupported(FPU)) {
1347     CpuFeatures::Scope scope(FPU);
1348     // MIPS FPU instructions implementing double precision to integer
1349     // conversion using round to zero. Since the FP value was qualified
1350     // above, the resulting integer should be a legal int32.
1351     // The original 'Exponent' word is still in scratch.
1352     lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
1353     mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1));
1354     trunc_w_d(double_scratch, double_scratch);
1355     mfc1(dest, double_scratch);
1356   } else {
1357     // On entry, dest has final downshift, scratch has original sign/exp/mant.
1358     // Save sign bit in top bit of dest.
1359     And(scratch2, scratch, Operand(0x80000000));
1360     Or(dest, dest, Operand(scratch2));
1361     // Put back the implicit 1, just above mantissa field.
1362     Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift));
1363 
1364     // Shift up the mantissa bits to take up the space the exponent used to
1365     // take. We just orred in the implicit bit so that took care of one and
1366     // we want to leave the sign bit 0 so we subtract 2 bits from the shift
1367     // distance. But we want to clear the sign-bit so shift one more bit
1368     // left, then shift right one bit.
1369     const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
1370     sll(scratch, scratch, shift_distance + 1);
1371     srl(scratch, scratch, 1);
1372 
1373     // Get the second half of the double. For some exponents we don't
1374     // actually need this because the bits get shifted out again, but
1375     // it's probably slower to test than just to do it.
1376     lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
1377     // Extract the top 10 bits, and insert those bottom 10 bits of scratch.
1378     // The width of the field here is the same as the shift amount above.
1379     const int field_width = shift_distance;
1380     Ext(scratch2, scratch2, 32-shift_distance, field_width);
1381     Ins(scratch, scratch2, 0, field_width);
1382     // Move down according to the exponent.
1383     srlv(scratch, scratch, dest);
1384     // Prepare the negative version of our integer.
1385     subu(scratch2, zero_reg, scratch);
1386     // Trick to check sign bit (msb) held in dest, count leading zero.
1387     // 0 indicates negative, save negative version with conditional move.
1388     Clz(dest, dest);
1389     Movz(scratch, scratch2, dest);
1390     mov(dest, scratch);
1391   }
1392   bind(&done);
1393 }
1394 
1395 
EmitFPUTruncate(FPURoundingMode rounding_mode,FPURegister result,DoubleRegister double_input,Register scratch1,Register except_flag,CheckForInexactConversion check_inexact)1396 void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
1397                                      FPURegister result,
1398                                      DoubleRegister double_input,
1399                                      Register scratch1,
1400                                      Register except_flag,
1401                                      CheckForInexactConversion check_inexact) {
1402   ASSERT(CpuFeatures::IsSupported(FPU));
1403   CpuFeatures::Scope scope(FPU);
1404 
1405   int32_t except_mask = kFCSRFlagMask;  // Assume interested in all exceptions.
1406 
1407   if (check_inexact == kDontCheckForInexactConversion) {
1408     // Ingore inexact exceptions.
1409     except_mask &= ~kFCSRInexactFlagMask;
1410   }
1411 
1412   // Save FCSR.
1413   cfc1(scratch1, FCSR);
1414   // Disable FPU exceptions.
1415   ctc1(zero_reg, FCSR);
1416 
1417   // Do operation based on rounding mode.
1418   switch (rounding_mode) {
1419     case kRoundToNearest:
1420       Round_w_d(result, double_input);
1421       break;
1422     case kRoundToZero:
1423       Trunc_w_d(result, double_input);
1424       break;
1425     case kRoundToPlusInf:
1426       Ceil_w_d(result, double_input);
1427       break;
1428     case kRoundToMinusInf:
1429       Floor_w_d(result, double_input);
1430       break;
1431   }  // End of switch-statement.
1432 
1433   // Retrieve FCSR.
1434   cfc1(except_flag, FCSR);
1435   // Restore FCSR.
1436   ctc1(scratch1, FCSR);
1437 
1438   // Check for fpu exceptions.
1439   And(except_flag, except_flag, Operand(except_mask));
1440 }
1441 
1442 
EmitOutOfInt32RangeTruncate(Register result,Register input_high,Register input_low,Register scratch)1443 void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result,
1444                                                  Register input_high,
1445                                                  Register input_low,
1446                                                  Register scratch) {
1447   Label done, normal_exponent, restore_sign;
1448   // Extract the biased exponent in result.
1449   Ext(result,
1450       input_high,
1451       HeapNumber::kExponentShift,
1452       HeapNumber::kExponentBits);
1453 
1454   // Check for Infinity and NaNs, which should return 0.
1455   Subu(scratch, result, HeapNumber::kExponentMask);
1456   Movz(result, zero_reg, scratch);
1457   Branch(&done, eq, scratch, Operand(zero_reg));
1458 
1459   // Express exponent as delta to (number of mantissa bits + 31).
1460   Subu(result,
1461        result,
1462        Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
1463 
1464   // If the delta is strictly positive, all bits would be shifted away,
1465   // which means that we can return 0.
1466   Branch(&normal_exponent, le, result, Operand(zero_reg));
1467   mov(result, zero_reg);
1468   Branch(&done);
1469 
1470   bind(&normal_exponent);
1471   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
1472   // Calculate shift.
1473   Addu(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits));
1474 
1475   // Save the sign.
1476   Register sign = result;
1477   result = no_reg;
1478   And(sign, input_high, Operand(HeapNumber::kSignMask));
1479 
1480   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
1481   // to check for this specific case.
1482   Label high_shift_needed, high_shift_done;
1483   Branch(&high_shift_needed, lt, scratch, Operand(32));
1484   mov(input_high, zero_reg);
1485   Branch(&high_shift_done);
1486   bind(&high_shift_needed);
1487 
1488   // Set the implicit 1 before the mantissa part in input_high.
1489   Or(input_high,
1490      input_high,
1491      Operand(1 << HeapNumber::kMantissaBitsInTopWord));
1492   // Shift the mantissa bits to the correct position.
1493   // We don't need to clear non-mantissa bits as they will be shifted away.
1494   // If they weren't, it would mean that the answer is in the 32bit range.
1495   sllv(input_high, input_high, scratch);
1496 
1497   bind(&high_shift_done);
1498 
1499   // Replace the shifted bits with bits from the lower mantissa word.
1500   Label pos_shift, shift_done;
1501   li(at, 32);
1502   subu(scratch, at, scratch);
1503   Branch(&pos_shift, ge, scratch, Operand(zero_reg));
1504 
1505   // Negate scratch.
1506   Subu(scratch, zero_reg, scratch);
1507   sllv(input_low, input_low, scratch);
1508   Branch(&shift_done);
1509 
1510   bind(&pos_shift);
1511   srlv(input_low, input_low, scratch);
1512 
1513   bind(&shift_done);
1514   Or(input_high, input_high, Operand(input_low));
1515   // Restore sign if necessary.
1516   mov(scratch, sign);
1517   result = sign;
1518   sign = no_reg;
1519   Subu(result, zero_reg, input_high);
1520   Movz(result, input_high, scratch);
1521   bind(&done);
1522 }
1523 
1524 
EmitECMATruncate(Register result,FPURegister double_input,FPURegister single_scratch,Register scratch,Register scratch2,Register scratch3)1525 void MacroAssembler::EmitECMATruncate(Register result,
1526                                       FPURegister double_input,
1527                                       FPURegister single_scratch,
1528                                       Register scratch,
1529                                       Register scratch2,
1530                                       Register scratch3) {
1531   CpuFeatures::Scope scope(FPU);
1532   ASSERT(!scratch2.is(result));
1533   ASSERT(!scratch3.is(result));
1534   ASSERT(!scratch3.is(scratch2));
1535   ASSERT(!scratch.is(result) &&
1536          !scratch.is(scratch2) &&
1537          !scratch.is(scratch3));
1538   ASSERT(!single_scratch.is(double_input));
1539 
1540   Label done;
1541   Label manual;
1542 
1543   // Clear cumulative exception flags and save the FCSR.
1544   cfc1(scratch2, FCSR);
1545   ctc1(zero_reg, FCSR);
1546   // Try a conversion to a signed integer.
1547   trunc_w_d(single_scratch, double_input);
1548   mfc1(result, single_scratch);
1549   // Retrieve and restore the FCSR.
1550   cfc1(scratch, FCSR);
1551   ctc1(scratch2, FCSR);
1552   // Check for overflow and NaNs.
1553   And(scratch,
1554       scratch,
1555       kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
1556   // If we had no exceptions we are done.
1557   Branch(&done, eq, scratch, Operand(zero_reg));
1558 
1559   // Load the double value and perform a manual truncation.
1560   Register input_high = scratch2;
1561   Register input_low = scratch3;
1562   Move(input_low, input_high, double_input);
1563   EmitOutOfInt32RangeTruncate(result,
1564                               input_high,
1565                               input_low,
1566                               scratch);
1567   bind(&done);
1568 }
1569 
1570 
GetLeastBitsFromSmi(Register dst,Register src,int num_least_bits)1571 void MacroAssembler::GetLeastBitsFromSmi(Register dst,
1572                                          Register src,
1573                                          int num_least_bits) {
1574   Ext(dst, src, kSmiTagSize, num_least_bits);
1575 }
1576 
1577 
GetLeastBitsFromInt32(Register dst,Register src,int num_least_bits)1578 void MacroAssembler::GetLeastBitsFromInt32(Register dst,
1579                                            Register src,
1580                                            int num_least_bits) {
1581   And(dst, src, Operand((1 << num_least_bits) - 1));
1582 }
1583 
1584 
1585 // Emulated condtional branches do not emit a nop in the branch delay slot.
1586 //
1587 // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
1588 #define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT(                                \
1589     (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) ||          \
1590     (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
1591 
1592 
Branch(int16_t offset,BranchDelaySlot bdslot)1593 void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
1594   BranchShort(offset, bdslot);
1595 }
1596 
1597 
Branch(int16_t offset,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)1598 void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
1599                             const Operand& rt,
1600                             BranchDelaySlot bdslot) {
1601   BranchShort(offset, cond, rs, rt, bdslot);
1602 }
1603 
1604 
Branch(Label * L,BranchDelaySlot bdslot)1605 void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
1606   if (L->is_bound()) {
1607     if (is_near(L)) {
1608       BranchShort(L, bdslot);
1609     } else {
1610       Jr(L, bdslot);
1611     }
1612   } else {
1613     if (is_trampoline_emitted()) {
1614       Jr(L, bdslot);
1615     } else {
1616       BranchShort(L, bdslot);
1617     }
1618   }
1619 }
1620 
1621 
Branch(Label * L,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)1622 void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
1623                             const Operand& rt,
1624                             BranchDelaySlot bdslot) {
1625   if (L->is_bound()) {
1626     if (is_near(L)) {
1627       BranchShort(L, cond, rs, rt, bdslot);
1628     } else {
1629       Label skip;
1630       Condition neg_cond = NegateCondition(cond);
1631       BranchShort(&skip, neg_cond, rs, rt);
1632       Jr(L, bdslot);
1633       bind(&skip);
1634     }
1635   } else {
1636     if (is_trampoline_emitted()) {
1637       Label skip;
1638       Condition neg_cond = NegateCondition(cond);
1639       BranchShort(&skip, neg_cond, rs, rt);
1640       Jr(L, bdslot);
1641       bind(&skip);
1642     } else {
1643       BranchShort(L, cond, rs, rt, bdslot);
1644     }
1645   }
1646 }
1647 
1648 
Branch(Label * L,Condition cond,Register rs,Heap::RootListIndex index,BranchDelaySlot bdslot)1649 void MacroAssembler::Branch(Label* L,
1650                             Condition cond,
1651                             Register rs,
1652                             Heap::RootListIndex index,
1653                             BranchDelaySlot bdslot) {
1654   LoadRoot(at, index);
1655   Branch(L, cond, rs, Operand(at), bdslot);
1656 }
1657 
1658 
BranchShort(int16_t offset,BranchDelaySlot bdslot)1659 void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) {
1660   b(offset);
1661 
1662   // Emit a nop in the branch delay slot if required.
1663   if (bdslot == PROTECT)
1664     nop();
1665 }
1666 
1667 
BranchShort(int16_t offset,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)1668 void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs,
1669                                  const Operand& rt,
1670                                  BranchDelaySlot bdslot) {
1671   BRANCH_ARGS_CHECK(cond, rs, rt);
1672   ASSERT(!rs.is(zero_reg));
1673   Register r2 = no_reg;
1674   Register scratch = at;
1675 
1676   if (rt.is_reg()) {
1677     // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or
1678     // rt.
1679     r2 = rt.rm_;
1680     switch (cond) {
1681       case cc_always:
1682         b(offset);
1683         break;
1684       case eq:
1685         beq(rs, r2, offset);
1686         break;
1687       case ne:
1688         bne(rs, r2, offset);
1689         break;
1690       // Signed comparison.
1691       case greater:
1692         if (r2.is(zero_reg)) {
1693           bgtz(rs, offset);
1694         } else {
1695           slt(scratch, r2, rs);
1696           bne(scratch, zero_reg, offset);
1697         }
1698         break;
1699       case greater_equal:
1700         if (r2.is(zero_reg)) {
1701           bgez(rs, offset);
1702         } else {
1703           slt(scratch, rs, r2);
1704           beq(scratch, zero_reg, offset);
1705         }
1706         break;
1707       case less:
1708         if (r2.is(zero_reg)) {
1709           bltz(rs, offset);
1710         } else {
1711           slt(scratch, rs, r2);
1712           bne(scratch, zero_reg, offset);
1713         }
1714         break;
1715       case less_equal:
1716         if (r2.is(zero_reg)) {
1717           blez(rs, offset);
1718         } else {
1719           slt(scratch, r2, rs);
1720           beq(scratch, zero_reg, offset);
1721         }
1722         break;
1723       // Unsigned comparison.
1724       case Ugreater:
1725         if (r2.is(zero_reg)) {
1726           bgtz(rs, offset);
1727         } else {
1728           sltu(scratch, r2, rs);
1729           bne(scratch, zero_reg, offset);
1730         }
1731         break;
1732       case Ugreater_equal:
1733         if (r2.is(zero_reg)) {
1734           bgez(rs, offset);
1735         } else {
1736           sltu(scratch, rs, r2);
1737           beq(scratch, zero_reg, offset);
1738         }
1739         break;
1740       case Uless:
1741         if (r2.is(zero_reg)) {
1742           // No code needs to be emitted.
1743           return;
1744         } else {
1745           sltu(scratch, rs, r2);
1746           bne(scratch, zero_reg, offset);
1747         }
1748         break;
1749       case Uless_equal:
1750         if (r2.is(zero_reg)) {
1751           b(offset);
1752         } else {
1753           sltu(scratch, r2, rs);
1754           beq(scratch, zero_reg, offset);
1755         }
1756         break;
1757       default:
1758         UNREACHABLE();
1759     }
1760   } else {
1761     // Be careful to always use shifted_branch_offset only just before the
1762     // branch instruction, as the location will be remember for patching the
1763     // target.
1764     switch (cond) {
1765       case cc_always:
1766         b(offset);
1767         break;
1768       case eq:
1769         // We don't want any other register but scratch clobbered.
1770         ASSERT(!scratch.is(rs));
1771         r2 = scratch;
1772         li(r2, rt);
1773         beq(rs, r2, offset);
1774         break;
1775       case ne:
1776         // We don't want any other register but scratch clobbered.
1777         ASSERT(!scratch.is(rs));
1778         r2 = scratch;
1779         li(r2, rt);
1780         bne(rs, r2, offset);
1781         break;
1782       // Signed comparison.
1783       case greater:
1784         if (rt.imm32_ == 0) {
1785           bgtz(rs, offset);
1786         } else {
1787           r2 = scratch;
1788           li(r2, rt);
1789           slt(scratch, r2, rs);
1790           bne(scratch, zero_reg, offset);
1791         }
1792         break;
1793       case greater_equal:
1794         if (rt.imm32_ == 0) {
1795           bgez(rs, offset);
1796         } else if (is_int16(rt.imm32_)) {
1797           slti(scratch, rs, rt.imm32_);
1798           beq(scratch, zero_reg, offset);
1799         } else {
1800           r2 = scratch;
1801           li(r2, rt);
1802           slt(scratch, rs, r2);
1803           beq(scratch, zero_reg, offset);
1804         }
1805         break;
1806       case less:
1807         if (rt.imm32_ == 0) {
1808           bltz(rs, offset);
1809         } else if (is_int16(rt.imm32_)) {
1810           slti(scratch, rs, rt.imm32_);
1811           bne(scratch, zero_reg, offset);
1812         } else {
1813           r2 = scratch;
1814           li(r2, rt);
1815           slt(scratch, rs, r2);
1816           bne(scratch, zero_reg, offset);
1817         }
1818         break;
1819       case less_equal:
1820         if (rt.imm32_ == 0) {
1821           blez(rs, offset);
1822         } else {
1823           r2 = scratch;
1824           li(r2, rt);
1825           slt(scratch, r2, rs);
1826           beq(scratch, zero_reg, offset);
1827        }
1828        break;
1829       // Unsigned comparison.
1830       case Ugreater:
1831         if (rt.imm32_ == 0) {
1832           bgtz(rs, offset);
1833         } else {
1834           r2 = scratch;
1835           li(r2, rt);
1836           sltu(scratch, r2, rs);
1837           bne(scratch, zero_reg, offset);
1838         }
1839         break;
1840       case Ugreater_equal:
1841         if (rt.imm32_ == 0) {
1842           bgez(rs, offset);
1843         } else if (is_int16(rt.imm32_)) {
1844           sltiu(scratch, rs, rt.imm32_);
1845           beq(scratch, zero_reg, offset);
1846         } else {
1847           r2 = scratch;
1848           li(r2, rt);
1849           sltu(scratch, rs, r2);
1850           beq(scratch, zero_reg, offset);
1851         }
1852         break;
1853       case Uless:
1854         if (rt.imm32_ == 0) {
1855           // No code needs to be emitted.
1856           return;
1857         } else if (is_int16(rt.imm32_)) {
1858           sltiu(scratch, rs, rt.imm32_);
1859           bne(scratch, zero_reg, offset);
1860         } else {
1861           r2 = scratch;
1862           li(r2, rt);
1863           sltu(scratch, rs, r2);
1864           bne(scratch, zero_reg, offset);
1865         }
1866         break;
1867       case Uless_equal:
1868         if (rt.imm32_ == 0) {
1869           b(offset);
1870         } else {
1871           r2 = scratch;
1872           li(r2, rt);
1873           sltu(scratch, r2, rs);
1874           beq(scratch, zero_reg, offset);
1875         }
1876         break;
1877       default:
1878         UNREACHABLE();
1879     }
1880   }
1881   // Emit a nop in the branch delay slot if required.
1882   if (bdslot == PROTECT)
1883     nop();
1884 }
1885 
1886 
BranchShort(Label * L,BranchDelaySlot bdslot)1887 void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
1888   // We use branch_offset as an argument for the branch instructions to be sure
1889   // it is called just before generating the branch instruction, as needed.
1890 
1891   b(shifted_branch_offset(L, false));
1892 
1893   // Emit a nop in the branch delay slot if required.
1894   if (bdslot == PROTECT)
1895     nop();
1896 }
1897 
1898 
BranchShort(Label * L,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)1899 void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs,
1900                                  const Operand& rt,
1901                                  BranchDelaySlot bdslot) {
1902   BRANCH_ARGS_CHECK(cond, rs, rt);
1903 
1904   int32_t offset;
1905   Register r2 = no_reg;
1906   Register scratch = at;
1907   if (rt.is_reg()) {
1908     r2 = rt.rm_;
1909     // Be careful to always use shifted_branch_offset only just before the
1910     // branch instruction, as the location will be remember for patching the
1911     // target.
1912     switch (cond) {
1913       case cc_always:
1914         offset = shifted_branch_offset(L, false);
1915         b(offset);
1916         break;
1917       case eq:
1918         offset = shifted_branch_offset(L, false);
1919         beq(rs, r2, offset);
1920         break;
1921       case ne:
1922         offset = shifted_branch_offset(L, false);
1923         bne(rs, r2, offset);
1924         break;
1925       // Signed comparison.
1926       case greater:
1927         if (r2.is(zero_reg)) {
1928           offset = shifted_branch_offset(L, false);
1929           bgtz(rs, offset);
1930         } else {
1931           slt(scratch, r2, rs);
1932           offset = shifted_branch_offset(L, false);
1933           bne(scratch, zero_reg, offset);
1934         }
1935         break;
1936       case greater_equal:
1937         if (r2.is(zero_reg)) {
1938           offset = shifted_branch_offset(L, false);
1939           bgez(rs, offset);
1940         } else {
1941           slt(scratch, rs, r2);
1942           offset = shifted_branch_offset(L, false);
1943           beq(scratch, zero_reg, offset);
1944         }
1945         break;
1946       case less:
1947         if (r2.is(zero_reg)) {
1948           offset = shifted_branch_offset(L, false);
1949           bltz(rs, offset);
1950         } else {
1951           slt(scratch, rs, r2);
1952           offset = shifted_branch_offset(L, false);
1953           bne(scratch, zero_reg, offset);
1954         }
1955         break;
1956       case less_equal:
1957         if (r2.is(zero_reg)) {
1958           offset = shifted_branch_offset(L, false);
1959           blez(rs, offset);
1960         } else {
1961           slt(scratch, r2, rs);
1962           offset = shifted_branch_offset(L, false);
1963           beq(scratch, zero_reg, offset);
1964         }
1965         break;
1966       // Unsigned comparison.
1967       case Ugreater:
1968         if (r2.is(zero_reg)) {
1969           offset = shifted_branch_offset(L, false);
1970            bgtz(rs, offset);
1971         } else {
1972           sltu(scratch, r2, rs);
1973           offset = shifted_branch_offset(L, false);
1974           bne(scratch, zero_reg, offset);
1975         }
1976         break;
1977       case Ugreater_equal:
1978         if (r2.is(zero_reg)) {
1979           offset = shifted_branch_offset(L, false);
1980           bgez(rs, offset);
1981         } else {
1982           sltu(scratch, rs, r2);
1983           offset = shifted_branch_offset(L, false);
1984           beq(scratch, zero_reg, offset);
1985         }
1986         break;
1987       case Uless:
1988         if (r2.is(zero_reg)) {
1989           // No code needs to be emitted.
1990           return;
1991         } else {
1992           sltu(scratch, rs, r2);
1993           offset = shifted_branch_offset(L, false);
1994           bne(scratch, zero_reg, offset);
1995         }
1996         break;
1997       case Uless_equal:
1998         if (r2.is(zero_reg)) {
1999           offset = shifted_branch_offset(L, false);
2000           b(offset);
2001         } else {
2002           sltu(scratch, r2, rs);
2003           offset = shifted_branch_offset(L, false);
2004           beq(scratch, zero_reg, offset);
2005         }
2006         break;
2007       default:
2008         UNREACHABLE();
2009     }
2010   } else {
2011     // Be careful to always use shifted_branch_offset only just before the
2012     // branch instruction, as the location will be remember for patching the
2013     // target.
2014     switch (cond) {
2015       case cc_always:
2016         offset = shifted_branch_offset(L, false);
2017         b(offset);
2018         break;
2019       case eq:
2020         ASSERT(!scratch.is(rs));
2021         r2 = scratch;
2022         li(r2, rt);
2023         offset = shifted_branch_offset(L, false);
2024         beq(rs, r2, offset);
2025         break;
2026       case ne:
2027         ASSERT(!scratch.is(rs));
2028         r2 = scratch;
2029         li(r2, rt);
2030         offset = shifted_branch_offset(L, false);
2031         bne(rs, r2, offset);
2032         break;
2033       // Signed comparison.
2034       case greater:
2035         if (rt.imm32_ == 0) {
2036           offset = shifted_branch_offset(L, false);
2037           bgtz(rs, offset);
2038         } else {
2039           ASSERT(!scratch.is(rs));
2040           r2 = scratch;
2041           li(r2, rt);
2042           slt(scratch, r2, rs);
2043           offset = shifted_branch_offset(L, false);
2044           bne(scratch, zero_reg, offset);
2045         }
2046         break;
2047       case greater_equal:
2048         if (rt.imm32_ == 0) {
2049           offset = shifted_branch_offset(L, false);
2050           bgez(rs, offset);
2051         } else if (is_int16(rt.imm32_)) {
2052           slti(scratch, rs, rt.imm32_);
2053           offset = shifted_branch_offset(L, false);
2054           beq(scratch, zero_reg, offset);
2055         } else {
2056           ASSERT(!scratch.is(rs));
2057           r2 = scratch;
2058           li(r2, rt);
2059           slt(scratch, rs, r2);
2060           offset = shifted_branch_offset(L, false);
2061           beq(scratch, zero_reg, offset);
2062         }
2063         break;
2064       case less:
2065         if (rt.imm32_ == 0) {
2066           offset = shifted_branch_offset(L, false);
2067           bltz(rs, offset);
2068         } else if (is_int16(rt.imm32_)) {
2069           slti(scratch, rs, rt.imm32_);
2070           offset = shifted_branch_offset(L, false);
2071           bne(scratch, zero_reg, offset);
2072         } else {
2073           ASSERT(!scratch.is(rs));
2074           r2 = scratch;
2075           li(r2, rt);
2076           slt(scratch, rs, r2);
2077           offset = shifted_branch_offset(L, false);
2078           bne(scratch, zero_reg, offset);
2079         }
2080         break;
2081       case less_equal:
2082         if (rt.imm32_ == 0) {
2083           offset = shifted_branch_offset(L, false);
2084           blez(rs, offset);
2085         } else {
2086           ASSERT(!scratch.is(rs));
2087           r2 = scratch;
2088           li(r2, rt);
2089           slt(scratch, r2, rs);
2090           offset = shifted_branch_offset(L, false);
2091           beq(scratch, zero_reg, offset);
2092         }
2093         break;
2094       // Unsigned comparison.
2095       case Ugreater:
2096         if (rt.imm32_ == 0) {
2097           offset = shifted_branch_offset(L, false);
2098           bgtz(rs, offset);
2099         } else {
2100           ASSERT(!scratch.is(rs));
2101           r2 = scratch;
2102           li(r2, rt);
2103           sltu(scratch, r2, rs);
2104           offset = shifted_branch_offset(L, false);
2105           bne(scratch, zero_reg, offset);
2106         }
2107         break;
2108       case Ugreater_equal:
2109         if (rt.imm32_ == 0) {
2110           offset = shifted_branch_offset(L, false);
2111           bgez(rs, offset);
2112         } else if (is_int16(rt.imm32_)) {
2113           sltiu(scratch, rs, rt.imm32_);
2114           offset = shifted_branch_offset(L, false);
2115           beq(scratch, zero_reg, offset);
2116         } else {
2117           ASSERT(!scratch.is(rs));
2118           r2 = scratch;
2119           li(r2, rt);
2120           sltu(scratch, rs, r2);
2121           offset = shifted_branch_offset(L, false);
2122           beq(scratch, zero_reg, offset);
2123         }
2124         break;
2125      case Uless:
2126         if (rt.imm32_ == 0) {
2127           // No code needs to be emitted.
2128           return;
2129         } else if (is_int16(rt.imm32_)) {
2130           sltiu(scratch, rs, rt.imm32_);
2131           offset = shifted_branch_offset(L, false);
2132           bne(scratch, zero_reg, offset);
2133         } else {
2134           ASSERT(!scratch.is(rs));
2135           r2 = scratch;
2136           li(r2, rt);
2137           sltu(scratch, rs, r2);
2138           offset = shifted_branch_offset(L, false);
2139           bne(scratch, zero_reg, offset);
2140         }
2141         break;
2142       case Uless_equal:
2143         if (rt.imm32_ == 0) {
2144           offset = shifted_branch_offset(L, false);
2145           b(offset);
2146         } else {
2147           ASSERT(!scratch.is(rs));
2148           r2 = scratch;
2149           li(r2, rt);
2150           sltu(scratch, r2, rs);
2151           offset = shifted_branch_offset(L, false);
2152           beq(scratch, zero_reg, offset);
2153         }
2154         break;
2155       default:
2156         UNREACHABLE();
2157     }
2158   }
2159   // Check that offset could actually hold on an int16_t.
2160   ASSERT(is_int16(offset));
2161   // Emit a nop in the branch delay slot if required.
2162   if (bdslot == PROTECT)
2163     nop();
2164 }
2165 
2166 
BranchAndLink(int16_t offset,BranchDelaySlot bdslot)2167 void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) {
2168   BranchAndLinkShort(offset, bdslot);
2169 }
2170 
2171 
BranchAndLink(int16_t offset,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)2172 void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
2173                                    const Operand& rt,
2174                                    BranchDelaySlot bdslot) {
2175   BranchAndLinkShort(offset, cond, rs, rt, bdslot);
2176 }
2177 
2178 
BranchAndLink(Label * L,BranchDelaySlot bdslot)2179 void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
2180   if (L->is_bound()) {
2181     if (is_near(L)) {
2182       BranchAndLinkShort(L, bdslot);
2183     } else {
2184       Jalr(L, bdslot);
2185     }
2186   } else {
2187     if (is_trampoline_emitted()) {
2188       Jalr(L, bdslot);
2189     } else {
2190       BranchAndLinkShort(L, bdslot);
2191     }
2192   }
2193 }
2194 
2195 
BranchAndLink(Label * L,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)2196 void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
2197                                    const Operand& rt,
2198                                    BranchDelaySlot bdslot) {
2199   if (L->is_bound()) {
2200     if (is_near(L)) {
2201       BranchAndLinkShort(L, cond, rs, rt, bdslot);
2202     } else {
2203       Label skip;
2204       Condition neg_cond = NegateCondition(cond);
2205       BranchShort(&skip, neg_cond, rs, rt);
2206       Jalr(L, bdslot);
2207       bind(&skip);
2208     }
2209   } else {
2210     if (is_trampoline_emitted()) {
2211       Label skip;
2212       Condition neg_cond = NegateCondition(cond);
2213       BranchShort(&skip, neg_cond, rs, rt);
2214       Jalr(L, bdslot);
2215       bind(&skip);
2216     } else {
2217       BranchAndLinkShort(L, cond, rs, rt, bdslot);
2218     }
2219   }
2220 }
2221 
2222 
2223 // We need to use a bgezal or bltzal, but they can't be used directly with the
2224 // slt instructions. We could use sub or add instead but we would miss overflow
2225 // cases, so we keep slt and add an intermediate third instruction.
BranchAndLinkShort(int16_t offset,BranchDelaySlot bdslot)2226 void MacroAssembler::BranchAndLinkShort(int16_t offset,
2227                                         BranchDelaySlot bdslot) {
2228   bal(offset);
2229 
2230   // Emit a nop in the branch delay slot if required.
2231   if (bdslot == PROTECT)
2232     nop();
2233 }
2234 
2235 
BranchAndLinkShort(int16_t offset,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)2236 void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond,
2237                                         Register rs, const Operand& rt,
2238                                         BranchDelaySlot bdslot) {
2239   BRANCH_ARGS_CHECK(cond, rs, rt);
2240   Register r2 = no_reg;
2241   Register scratch = at;
2242 
2243   if (rt.is_reg()) {
2244     r2 = rt.rm_;
2245   } else if (cond != cc_always) {
2246     r2 = scratch;
2247     li(r2, rt);
2248   }
2249 
2250   switch (cond) {
2251     case cc_always:
2252       bal(offset);
2253       break;
2254     case eq:
2255       bne(rs, r2, 2);
2256       nop();
2257       bal(offset);
2258       break;
2259     case ne:
2260       beq(rs, r2, 2);
2261       nop();
2262       bal(offset);
2263       break;
2264 
2265     // Signed comparison.
2266     case greater:
2267       slt(scratch, r2, rs);
2268       addiu(scratch, scratch, -1);
2269       bgezal(scratch, offset);
2270       break;
2271     case greater_equal:
2272       slt(scratch, rs, r2);
2273       addiu(scratch, scratch, -1);
2274       bltzal(scratch, offset);
2275       break;
2276     case less:
2277       slt(scratch, rs, r2);
2278       addiu(scratch, scratch, -1);
2279       bgezal(scratch, offset);
2280       break;
2281     case less_equal:
2282       slt(scratch, r2, rs);
2283       addiu(scratch, scratch, -1);
2284       bltzal(scratch, offset);
2285       break;
2286 
2287     // Unsigned comparison.
2288     case Ugreater:
2289       sltu(scratch, r2, rs);
2290       addiu(scratch, scratch, -1);
2291       bgezal(scratch, offset);
2292       break;
2293     case Ugreater_equal:
2294       sltu(scratch, rs, r2);
2295       addiu(scratch, scratch, -1);
2296       bltzal(scratch, offset);
2297       break;
2298     case Uless:
2299       sltu(scratch, rs, r2);
2300       addiu(scratch, scratch, -1);
2301       bgezal(scratch, offset);
2302       break;
2303     case Uless_equal:
2304       sltu(scratch, r2, rs);
2305       addiu(scratch, scratch, -1);
2306       bltzal(scratch, offset);
2307       break;
2308 
2309     default:
2310       UNREACHABLE();
2311   }
2312   // Emit a nop in the branch delay slot if required.
2313   if (bdslot == PROTECT)
2314     nop();
2315 }
2316 
2317 
BranchAndLinkShort(Label * L,BranchDelaySlot bdslot)2318 void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
2319   bal(shifted_branch_offset(L, false));
2320 
2321   // Emit a nop in the branch delay slot if required.
2322   if (bdslot == PROTECT)
2323     nop();
2324 }
2325 
2326 
BranchAndLinkShort(Label * L,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bdslot)2327 void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs,
2328                                         const Operand& rt,
2329                                         BranchDelaySlot bdslot) {
2330   BRANCH_ARGS_CHECK(cond, rs, rt);
2331 
2332   int32_t offset;
2333   Register r2 = no_reg;
2334   Register scratch = at;
2335   if (rt.is_reg()) {
2336     r2 = rt.rm_;
2337   } else if (cond != cc_always) {
2338     r2 = scratch;
2339     li(r2, rt);
2340   }
2341 
2342   switch (cond) {
2343     case cc_always:
2344       offset = shifted_branch_offset(L, false);
2345       bal(offset);
2346       break;
2347     case eq:
2348       bne(rs, r2, 2);
2349       nop();
2350       offset = shifted_branch_offset(L, false);
2351       bal(offset);
2352       break;
2353     case ne:
2354       beq(rs, r2, 2);
2355       nop();
2356       offset = shifted_branch_offset(L, false);
2357       bal(offset);
2358       break;
2359 
2360     // Signed comparison.
2361     case greater:
2362       slt(scratch, r2, rs);
2363       addiu(scratch, scratch, -1);
2364       offset = shifted_branch_offset(L, false);
2365       bgezal(scratch, offset);
2366       break;
2367     case greater_equal:
2368       slt(scratch, rs, r2);
2369       addiu(scratch, scratch, -1);
2370       offset = shifted_branch_offset(L, false);
2371       bltzal(scratch, offset);
2372       break;
2373     case less:
2374       slt(scratch, rs, r2);
2375       addiu(scratch, scratch, -1);
2376       offset = shifted_branch_offset(L, false);
2377       bgezal(scratch, offset);
2378       break;
2379     case less_equal:
2380       slt(scratch, r2, rs);
2381       addiu(scratch, scratch, -1);
2382       offset = shifted_branch_offset(L, false);
2383       bltzal(scratch, offset);
2384       break;
2385 
2386     // Unsigned comparison.
2387     case Ugreater:
2388       sltu(scratch, r2, rs);
2389       addiu(scratch, scratch, -1);
2390       offset = shifted_branch_offset(L, false);
2391       bgezal(scratch, offset);
2392       break;
2393     case Ugreater_equal:
2394       sltu(scratch, rs, r2);
2395       addiu(scratch, scratch, -1);
2396       offset = shifted_branch_offset(L, false);
2397       bltzal(scratch, offset);
2398       break;
2399     case Uless:
2400       sltu(scratch, rs, r2);
2401       addiu(scratch, scratch, -1);
2402       offset = shifted_branch_offset(L, false);
2403       bgezal(scratch, offset);
2404       break;
2405     case Uless_equal:
2406       sltu(scratch, r2, rs);
2407       addiu(scratch, scratch, -1);
2408       offset = shifted_branch_offset(L, false);
2409       bltzal(scratch, offset);
2410       break;
2411 
2412     default:
2413       UNREACHABLE();
2414   }
2415 
2416   // Check that offset could actually hold on an int16_t.
2417   ASSERT(is_int16(offset));
2418 
2419   // Emit a nop in the branch delay slot if required.
2420   if (bdslot == PROTECT)
2421     nop();
2422 }
2423 
2424 
Jump(Register target,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2425 void MacroAssembler::Jump(Register target,
2426                           Condition cond,
2427                           Register rs,
2428                           const Operand& rt,
2429                           BranchDelaySlot bd) {
2430   BlockTrampolinePoolScope block_trampoline_pool(this);
2431   if (cond == cc_always) {
2432     jr(target);
2433   } else {
2434     BRANCH_ARGS_CHECK(cond, rs, rt);
2435     Branch(2, NegateCondition(cond), rs, rt);
2436     jr(target);
2437   }
2438   // Emit a nop in the branch delay slot if required.
2439   if (bd == PROTECT)
2440     nop();
2441 }
2442 
2443 
Jump(intptr_t target,RelocInfo::Mode rmode,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2444 void MacroAssembler::Jump(intptr_t target,
2445                           RelocInfo::Mode rmode,
2446                           Condition cond,
2447                           Register rs,
2448                           const Operand& rt,
2449                           BranchDelaySlot bd) {
2450   Label skip;
2451   if (cond != cc_always) {
2452     Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
2453   }
2454   // The first instruction of 'li' may be placed in the delay slot.
2455   // This is not an issue, t9 is expected to be clobbered anyway.
2456   li(t9, Operand(target, rmode));
2457   Jump(t9, al, zero_reg, Operand(zero_reg), bd);
2458   bind(&skip);
2459 }
2460 
2461 
Jump(Address target,RelocInfo::Mode rmode,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2462 void MacroAssembler::Jump(Address target,
2463                           RelocInfo::Mode rmode,
2464                           Condition cond,
2465                           Register rs,
2466                           const Operand& rt,
2467                           BranchDelaySlot bd) {
2468   ASSERT(!RelocInfo::IsCodeTarget(rmode));
2469   Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
2470 }
2471 
2472 
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2473 void MacroAssembler::Jump(Handle<Code> code,
2474                           RelocInfo::Mode rmode,
2475                           Condition cond,
2476                           Register rs,
2477                           const Operand& rt,
2478                           BranchDelaySlot bd) {
2479   ASSERT(RelocInfo::IsCodeTarget(rmode));
2480   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd);
2481 }
2482 
2483 
CallSize(Register target,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2484 int MacroAssembler::CallSize(Register target,
2485                              Condition cond,
2486                              Register rs,
2487                              const Operand& rt,
2488                              BranchDelaySlot bd) {
2489   int size = 0;
2490 
2491   if (cond == cc_always) {
2492     size += 1;
2493   } else {
2494     size += 3;
2495   }
2496 
2497   if (bd == PROTECT)
2498     size += 1;
2499 
2500   return size * kInstrSize;
2501 }
2502 
2503 
2504 // Note: To call gcc-compiled C code on mips, you must call thru t9.
Call(Register target,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2505 void MacroAssembler::Call(Register target,
2506                           Condition cond,
2507                           Register rs,
2508                           const Operand& rt,
2509                           BranchDelaySlot bd) {
2510   BlockTrampolinePoolScope block_trampoline_pool(this);
2511   Label start;
2512   bind(&start);
2513   if (cond == cc_always) {
2514     jalr(target);
2515   } else {
2516     BRANCH_ARGS_CHECK(cond, rs, rt);
2517     Branch(2, NegateCondition(cond), rs, rt);
2518     jalr(target);
2519   }
2520   // Emit a nop in the branch delay slot if required.
2521   if (bd == PROTECT)
2522     nop();
2523 
2524   ASSERT_EQ(CallSize(target, cond, rs, rt, bd),
2525             SizeOfCodeGeneratedSince(&start));
2526 }
2527 
2528 
CallSize(Address target,RelocInfo::Mode rmode,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2529 int MacroAssembler::CallSize(Address target,
2530                              RelocInfo::Mode rmode,
2531                              Condition cond,
2532                              Register rs,
2533                              const Operand& rt,
2534                              BranchDelaySlot bd) {
2535   int size = CallSize(t9, cond, rs, rt, bd);
2536   return size + 2 * kInstrSize;
2537 }
2538 
2539 
Call(Address target,RelocInfo::Mode rmode,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2540 void MacroAssembler::Call(Address target,
2541                           RelocInfo::Mode rmode,
2542                           Condition cond,
2543                           Register rs,
2544                           const Operand& rt,
2545                           BranchDelaySlot bd) {
2546   BlockTrampolinePoolScope block_trampoline_pool(this);
2547   Label start;
2548   bind(&start);
2549   int32_t target_int = reinterpret_cast<int32_t>(target);
2550   // Must record previous source positions before the
2551   // li() generates a new code target.
2552   positions_recorder()->WriteRecordedPositions();
2553   li(t9, Operand(target_int, rmode), CONSTANT_SIZE);
2554   Call(t9, cond, rs, rt, bd);
2555   ASSERT_EQ(CallSize(target, rmode, cond, rs, rt, bd),
2556             SizeOfCodeGeneratedSince(&start));
2557 }
2558 
2559 
CallSize(Handle<Code> code,RelocInfo::Mode rmode,unsigned ast_id,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2560 int MacroAssembler::CallSize(Handle<Code> code,
2561                              RelocInfo::Mode rmode,
2562                              unsigned ast_id,
2563                              Condition cond,
2564                              Register rs,
2565                              const Operand& rt,
2566                              BranchDelaySlot bd) {
2567   return CallSize(reinterpret_cast<Address>(code.location()),
2568       rmode, cond, rs, rt, bd);
2569 }
2570 
2571 
Call(Handle<Code> code,RelocInfo::Mode rmode,unsigned ast_id,Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2572 void MacroAssembler::Call(Handle<Code> code,
2573                           RelocInfo::Mode rmode,
2574                           unsigned ast_id,
2575                           Condition cond,
2576                           Register rs,
2577                           const Operand& rt,
2578                           BranchDelaySlot bd) {
2579   BlockTrampolinePoolScope block_trampoline_pool(this);
2580   Label start;
2581   bind(&start);
2582   ASSERT(RelocInfo::IsCodeTarget(rmode));
2583   if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
2584     SetRecordedAstId(ast_id);
2585     rmode = RelocInfo::CODE_TARGET_WITH_ID;
2586   }
2587   Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd);
2588   ASSERT_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd),
2589             SizeOfCodeGeneratedSince(&start));
2590 }
2591 
2592 
Ret(Condition cond,Register rs,const Operand & rt,BranchDelaySlot bd)2593 void MacroAssembler::Ret(Condition cond,
2594                          Register rs,
2595                          const Operand& rt,
2596                          BranchDelaySlot bd) {
2597   Jump(ra, cond, rs, rt, bd);
2598 }
2599 
2600 
J(Label * L,BranchDelaySlot bdslot)2601 void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) {
2602   BlockTrampolinePoolScope block_trampoline_pool(this);
2603 
2604   uint32_t imm28;
2605   imm28 = jump_address(L);
2606   imm28 &= kImm28Mask;
2607   { BlockGrowBufferScope block_buf_growth(this);
2608     // Buffer growth (and relocation) must be blocked for internal references
2609     // until associated instructions are emitted and available to be patched.
2610     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2611     j(imm28);
2612   }
2613   // Emit a nop in the branch delay slot if required.
2614   if (bdslot == PROTECT)
2615     nop();
2616 }
2617 
2618 
Jr(Label * L,BranchDelaySlot bdslot)2619 void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) {
2620   BlockTrampolinePoolScope block_trampoline_pool(this);
2621 
2622   uint32_t imm32;
2623   imm32 = jump_address(L);
2624   { BlockGrowBufferScope block_buf_growth(this);
2625     // Buffer growth (and relocation) must be blocked for internal references
2626     // until associated instructions are emitted and available to be patched.
2627     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2628     lui(at, (imm32 & kHiMask) >> kLuiShift);
2629     ori(at, at, (imm32 & kImm16Mask));
2630   }
2631   jr(at);
2632 
2633   // Emit a nop in the branch delay slot if required.
2634   if (bdslot == PROTECT)
2635     nop();
2636 }
2637 
2638 
Jalr(Label * L,BranchDelaySlot bdslot)2639 void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) {
2640   BlockTrampolinePoolScope block_trampoline_pool(this);
2641 
2642   uint32_t imm32;
2643   imm32 = jump_address(L);
2644   { BlockGrowBufferScope block_buf_growth(this);
2645     // Buffer growth (and relocation) must be blocked for internal references
2646     // until associated instructions are emitted and available to be patched.
2647     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2648     lui(at, (imm32 & kHiMask) >> kLuiShift);
2649     ori(at, at, (imm32 & kImm16Mask));
2650   }
2651   jalr(at);
2652 
2653   // Emit a nop in the branch delay slot if required.
2654   if (bdslot == PROTECT)
2655     nop();
2656 }
2657 
DropAndRet(int drop)2658 void MacroAssembler::DropAndRet(int drop) {
2659   Ret(USE_DELAY_SLOT);
2660   addiu(sp, sp, drop * kPointerSize);
2661 }
2662 
DropAndRet(int drop,Condition cond,Register r1,const Operand & r2)2663 void MacroAssembler::DropAndRet(int drop,
2664                                 Condition cond,
2665                                 Register r1,
2666                                 const Operand& r2) {
2667   // Both Drop and Ret need to be conditional.
2668   Label skip;
2669   if (cond != cc_always) {
2670     Branch(&skip, NegateCondition(cond), r1, r2);
2671   }
2672 
2673   Drop(drop);
2674   Ret();
2675 
2676   if (cond != cc_always) {
2677     bind(&skip);
2678   }
2679 }
2680 
2681 
Drop(int count,Condition cond,Register reg,const Operand & op)2682 void MacroAssembler::Drop(int count,
2683                           Condition cond,
2684                           Register reg,
2685                           const Operand& op) {
2686   if (count <= 0) {
2687     return;
2688   }
2689 
2690   Label skip;
2691 
2692   if (cond != al) {
2693      Branch(&skip, NegateCondition(cond), reg, op);
2694   }
2695 
2696   addiu(sp, sp, count * kPointerSize);
2697 
2698   if (cond != al) {
2699     bind(&skip);
2700   }
2701 }
2702 
2703 
2704 
Swap(Register reg1,Register reg2,Register scratch)2705 void MacroAssembler::Swap(Register reg1,
2706                           Register reg2,
2707                           Register scratch) {
2708   if (scratch.is(no_reg)) {
2709     Xor(reg1, reg1, Operand(reg2));
2710     Xor(reg2, reg2, Operand(reg1));
2711     Xor(reg1, reg1, Operand(reg2));
2712   } else {
2713     mov(scratch, reg1);
2714     mov(reg1, reg2);
2715     mov(reg2, scratch);
2716   }
2717 }
2718 
2719 
Call(Label * target)2720 void MacroAssembler::Call(Label* target) {
2721   BranchAndLink(target);
2722 }
2723 
2724 
Push(Handle<Object> handle)2725 void MacroAssembler::Push(Handle<Object> handle) {
2726   li(at, Operand(handle));
2727   push(at);
2728 }
2729 
2730 
2731 #ifdef ENABLE_DEBUGGER_SUPPORT
2732 
DebugBreak()2733 void MacroAssembler::DebugBreak() {
2734   PrepareCEntryArgs(0);
2735   PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate()));
2736   CEntryStub ces(1);
2737   ASSERT(AllowThisStubCall(&ces));
2738   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
2739 }
2740 
2741 #endif  // ENABLE_DEBUGGER_SUPPORT
2742 
2743 
2744 // ---------------------------------------------------------------------------
2745 // Exception handling.
2746 
PushTryHandler(StackHandler::Kind kind,int handler_index)2747 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
2748                                     int handler_index) {
2749   // Adjust this code if not the case.
2750   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2751   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
2752   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2753   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2754   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2755   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2756 
2757   // For the JSEntry handler, we must preserve a0-a3 and s0.
2758   // t1-t3 are available. We will build up the handler from the bottom by
2759   // pushing on the stack.
2760   // Set up the code object (t1) and the state (t2) for pushing.
2761   unsigned state =
2762       StackHandler::IndexField::encode(handler_index) |
2763       StackHandler::KindField::encode(kind);
2764   li(t1, Operand(CodeObject()), CONSTANT_SIZE);
2765   li(t2, Operand(state));
2766 
2767   // Push the frame pointer, context, state, and code object.
2768   if (kind == StackHandler::JS_ENTRY) {
2769     ASSERT_EQ(Smi::FromInt(0), 0);
2770     // The second zero_reg indicates no context.
2771     // The first zero_reg is the NULL frame pointer.
2772     // The operands are reversed to match the order of MultiPush/Pop.
2773     Push(zero_reg, zero_reg, t2, t1);
2774   } else {
2775     MultiPush(t1.bit() | t2.bit() | cp.bit() | fp.bit());
2776   }
2777 
2778   // Link the current handler as the next handler.
2779   li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
2780   lw(t1, MemOperand(t2));
2781   push(t1);
2782   // Set this new handler as the current one.
2783   sw(sp, MemOperand(t2));
2784 }
2785 
2786 
PopTryHandler()2787 void MacroAssembler::PopTryHandler() {
2788   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2789   pop(a1);
2790   Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
2791   li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
2792   sw(a1, MemOperand(at));
2793 }
2794 
2795 
JumpToHandlerEntry()2796 void MacroAssembler::JumpToHandlerEntry() {
2797   // Compute the handler entry address and jump to it.  The handler table is
2798   // a fixed array of (smi-tagged) code offsets.
2799   // v0 = exception, a1 = code object, a2 = state.
2800   lw(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));  // Handler table.
2801   Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2802   srl(a2, a2, StackHandler::kKindWidth);  // Handler index.
2803   sll(a2, a2, kPointerSizeLog2);
2804   Addu(a2, a3, a2);
2805   lw(a2, MemOperand(a2));  // Smi-tagged offset.
2806   Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start.
2807   sra(t9, a2, kSmiTagSize);
2808   Addu(t9, t9, a1);
2809   Jump(t9);  // Jump.
2810 }
2811 
2812 
Throw(Register value)2813 void MacroAssembler::Throw(Register value) {
2814   // Adjust this code if not the case.
2815   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2816   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2817   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2818   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2819   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2820   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2821 
2822   // The exception is expected in v0.
2823   Move(v0, value);
2824 
2825   // Drop the stack pointer to the top of the top handler.
2826   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress,
2827                                    isolate())));
2828   lw(sp, MemOperand(a3));
2829 
2830   // Restore the next handler.
2831   pop(a2);
2832   sw(a2, MemOperand(a3));
2833 
2834   // Get the code object (a1) and state (a2).  Restore the context and frame
2835   // pointer.
2836   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
2837 
2838   // If the handler is a JS frame, restore the context to the frame.
2839   // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
2840   // or cp.
2841   Label done;
2842   Branch(&done, eq, cp, Operand(zero_reg));
2843   sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2844   bind(&done);
2845 
2846   JumpToHandlerEntry();
2847 }
2848 
2849 
ThrowUncatchable(Register value)2850 void MacroAssembler::ThrowUncatchable(Register value) {
2851   // Adjust this code if not the case.
2852   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2853   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
2854   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2855   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2856   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2857   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2858 
2859   // The exception is expected in v0.
2860   if (!value.is(v0)) {
2861     mov(v0, value);
2862   }
2863   // Drop the stack pointer to the top of the top stack handler.
2864   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
2865   lw(sp, MemOperand(a3));
2866 
2867   // Unwind the handlers until the ENTRY handler is found.
2868   Label fetch_next, check_kind;
2869   jmp(&check_kind);
2870   bind(&fetch_next);
2871   lw(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
2872 
2873   bind(&check_kind);
2874   STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
2875   lw(a2, MemOperand(sp, StackHandlerConstants::kStateOffset));
2876   And(a2, a2, Operand(StackHandler::KindField::kMask));
2877   Branch(&fetch_next, ne, a2, Operand(zero_reg));
2878 
2879   // Set the top handler address to next handler past the top ENTRY handler.
2880   pop(a2);
2881   sw(a2, MemOperand(a3));
2882 
2883   // Get the code object (a1) and state (a2).  Clear the context and frame
2884   // pointer (0 was saved in the handler).
2885   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
2886 
2887   JumpToHandlerEntry();
2888 }
2889 
2890 
AllocateInNewSpace(int object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)2891 void MacroAssembler::AllocateInNewSpace(int object_size,
2892                                         Register result,
2893                                         Register scratch1,
2894                                         Register scratch2,
2895                                         Label* gc_required,
2896                                         AllocationFlags flags) {
2897   if (!FLAG_inline_new) {
2898     if (emit_debug_code()) {
2899       // Trash the registers to simulate an allocation failure.
2900       li(result, 0x7091);
2901       li(scratch1, 0x7191);
2902       li(scratch2, 0x7291);
2903     }
2904     jmp(gc_required);
2905     return;
2906   }
2907 
2908   ASSERT(!result.is(scratch1));
2909   ASSERT(!result.is(scratch2));
2910   ASSERT(!scratch1.is(scratch2));
2911   ASSERT(!scratch1.is(t9));
2912   ASSERT(!scratch2.is(t9));
2913   ASSERT(!result.is(t9));
2914 
2915   // Make object size into bytes.
2916   if ((flags & SIZE_IN_WORDS) != 0) {
2917     object_size *= kPointerSize;
2918   }
2919   ASSERT_EQ(0, object_size & kObjectAlignmentMask);
2920 
2921   // Check relative positions of allocation top and limit addresses.
2922   // ARM adds additional checks to make sure the ldm instruction can be
2923   // used. On MIPS we don't have ldm so we don't need additional checks either.
2924   ExternalReference new_space_allocation_top =
2925       ExternalReference::new_space_allocation_top_address(isolate());
2926   ExternalReference new_space_allocation_limit =
2927       ExternalReference::new_space_allocation_limit_address(isolate());
2928   intptr_t top   =
2929       reinterpret_cast<intptr_t>(new_space_allocation_top.address());
2930   intptr_t limit =
2931       reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
2932   ASSERT((limit - top) == kPointerSize);
2933 
2934   // Set up allocation top address and object size registers.
2935   Register topaddr = scratch1;
2936   Register obj_size_reg = scratch2;
2937   li(topaddr, Operand(new_space_allocation_top));
2938   li(obj_size_reg, Operand(object_size));
2939 
2940   // This code stores a temporary value in t9.
2941   if ((flags & RESULT_CONTAINS_TOP) == 0) {
2942     // Load allocation top into result and allocation limit into t9.
2943     lw(result, MemOperand(topaddr));
2944     lw(t9, MemOperand(topaddr, kPointerSize));
2945   } else {
2946     if (emit_debug_code()) {
2947       // Assert that result actually contains top on entry. t9 is used
2948       // immediately below so this use of t9 does not cause difference with
2949       // respect to register content between debug and release mode.
2950       lw(t9, MemOperand(topaddr));
2951       Check(eq, "Unexpected allocation top", result, Operand(t9));
2952     }
2953     // Load allocation limit into t9. Result already contains allocation top.
2954     lw(t9, MemOperand(topaddr, limit - top));
2955   }
2956 
2957   // Calculate new top and bail out if new space is exhausted. Use result
2958   // to calculate the new top.
2959   Addu(scratch2, result, Operand(obj_size_reg));
2960   Branch(gc_required, Ugreater, scratch2, Operand(t9));
2961   sw(scratch2, MemOperand(topaddr));
2962 
2963   // Tag object if requested.
2964   if ((flags & TAG_OBJECT) != 0) {
2965     Addu(result, result, Operand(kHeapObjectTag));
2966   }
2967 }
2968 
2969 
AllocateInNewSpace(Register object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)2970 void MacroAssembler::AllocateInNewSpace(Register object_size,
2971                                         Register result,
2972                                         Register scratch1,
2973                                         Register scratch2,
2974                                         Label* gc_required,
2975                                         AllocationFlags flags) {
2976   if (!FLAG_inline_new) {
2977     if (emit_debug_code()) {
2978       // Trash the registers to simulate an allocation failure.
2979       li(result, 0x7091);
2980       li(scratch1, 0x7191);
2981       li(scratch2, 0x7291);
2982     }
2983     jmp(gc_required);
2984     return;
2985   }
2986 
2987   ASSERT(!result.is(scratch1));
2988   ASSERT(!result.is(scratch2));
2989   ASSERT(!scratch1.is(scratch2));
2990   ASSERT(!object_size.is(t9));
2991   ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
2992 
2993   // Check relative positions of allocation top and limit addresses.
2994   // ARM adds additional checks to make sure the ldm instruction can be
2995   // used. On MIPS we don't have ldm so we don't need additional checks either.
2996   ExternalReference new_space_allocation_top =
2997       ExternalReference::new_space_allocation_top_address(isolate());
2998   ExternalReference new_space_allocation_limit =
2999       ExternalReference::new_space_allocation_limit_address(isolate());
3000   intptr_t top   =
3001       reinterpret_cast<intptr_t>(new_space_allocation_top.address());
3002   intptr_t limit =
3003       reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
3004   ASSERT((limit - top) == kPointerSize);
3005 
3006   // Set up allocation top address and object size registers.
3007   Register topaddr = scratch1;
3008   li(topaddr, Operand(new_space_allocation_top));
3009 
3010   // This code stores a temporary value in t9.
3011   if ((flags & RESULT_CONTAINS_TOP) == 0) {
3012     // Load allocation top into result and allocation limit into t9.
3013     lw(result, MemOperand(topaddr));
3014     lw(t9, MemOperand(topaddr, kPointerSize));
3015   } else {
3016     if (emit_debug_code()) {
3017       // Assert that result actually contains top on entry. t9 is used
3018       // immediately below so this use of t9 does not cause difference with
3019       // respect to register content between debug and release mode.
3020       lw(t9, MemOperand(topaddr));
3021       Check(eq, "Unexpected allocation top", result, Operand(t9));
3022     }
3023     // Load allocation limit into t9. Result already contains allocation top.
3024     lw(t9, MemOperand(topaddr, limit - top));
3025   }
3026 
3027   // Calculate new top and bail out if new space is exhausted. Use result
3028   // to calculate the new top. Object size may be in words so a shift is
3029   // required to get the number of bytes.
3030   if ((flags & SIZE_IN_WORDS) != 0) {
3031     sll(scratch2, object_size, kPointerSizeLog2);
3032     Addu(scratch2, result, scratch2);
3033   } else {
3034     Addu(scratch2, result, Operand(object_size));
3035   }
3036   Branch(gc_required, Ugreater, scratch2, Operand(t9));
3037 
3038   // Update allocation top. result temporarily holds the new top.
3039   if (emit_debug_code()) {
3040     And(t9, scratch2, Operand(kObjectAlignmentMask));
3041     Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg));
3042   }
3043   sw(scratch2, MemOperand(topaddr));
3044 
3045   // Tag object if requested.
3046   if ((flags & TAG_OBJECT) != 0) {
3047     Addu(result, result, Operand(kHeapObjectTag));
3048   }
3049 }
3050 
3051 
UndoAllocationInNewSpace(Register object,Register scratch)3052 void MacroAssembler::UndoAllocationInNewSpace(Register object,
3053                                               Register scratch) {
3054   ExternalReference new_space_allocation_top =
3055       ExternalReference::new_space_allocation_top_address(isolate());
3056 
3057   // Make sure the object has no tag before resetting top.
3058   And(object, object, Operand(~kHeapObjectTagMask));
3059 #ifdef DEBUG
3060   // Check that the object un-allocated is below the current top.
3061   li(scratch, Operand(new_space_allocation_top));
3062   lw(scratch, MemOperand(scratch));
3063   Check(less, "Undo allocation of non allocated memory",
3064       object, Operand(scratch));
3065 #endif
3066   // Write the address of the object to un-allocate as the current top.
3067   li(scratch, Operand(new_space_allocation_top));
3068   sw(object, MemOperand(scratch));
3069 }
3070 
3071 
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3072 void MacroAssembler::AllocateTwoByteString(Register result,
3073                                            Register length,
3074                                            Register scratch1,
3075                                            Register scratch2,
3076                                            Register scratch3,
3077                                            Label* gc_required) {
3078   // Calculate the number of bytes needed for the characters in the string while
3079   // observing object alignment.
3080   ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3081   sll(scratch1, length, 1);  // Length in bytes, not chars.
3082   addiu(scratch1, scratch1,
3083        kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3084   And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
3085 
3086   // Allocate two-byte string in new space.
3087   AllocateInNewSpace(scratch1,
3088                      result,
3089                      scratch2,
3090                      scratch3,
3091                      gc_required,
3092                      TAG_OBJECT);
3093 
3094   // Set the map, length and hash field.
3095   InitializeNewString(result,
3096                       length,
3097                       Heap::kStringMapRootIndex,
3098                       scratch1,
3099                       scratch2);
3100 }
3101 
3102 
AllocateAsciiString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3103 void MacroAssembler::AllocateAsciiString(Register result,
3104                                          Register length,
3105                                          Register scratch1,
3106                                          Register scratch2,
3107                                          Register scratch3,
3108                                          Label* gc_required) {
3109   // Calculate the number of bytes needed for the characters in the string
3110   // while observing object alignment.
3111   ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
3112   ASSERT(kCharSize == 1);
3113   addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize);
3114   And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
3115 
3116   // Allocate ASCII string in new space.
3117   AllocateInNewSpace(scratch1,
3118                      result,
3119                      scratch2,
3120                      scratch3,
3121                      gc_required,
3122                      TAG_OBJECT);
3123 
3124   // Set the map, length and hash field.
3125   InitializeNewString(result,
3126                       length,
3127                       Heap::kAsciiStringMapRootIndex,
3128                       scratch1,
3129                       scratch2);
3130 }
3131 
3132 
AllocateTwoByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3133 void MacroAssembler::AllocateTwoByteConsString(Register result,
3134                                                Register length,
3135                                                Register scratch1,
3136                                                Register scratch2,
3137                                                Label* gc_required) {
3138   AllocateInNewSpace(ConsString::kSize,
3139                      result,
3140                      scratch1,
3141                      scratch2,
3142                      gc_required,
3143                      TAG_OBJECT);
3144   InitializeNewString(result,
3145                       length,
3146                       Heap::kConsStringMapRootIndex,
3147                       scratch1,
3148                       scratch2);
3149 }
3150 
3151 
AllocateAsciiConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3152 void MacroAssembler::AllocateAsciiConsString(Register result,
3153                                              Register length,
3154                                              Register scratch1,
3155                                              Register scratch2,
3156                                              Label* gc_required) {
3157   AllocateInNewSpace(ConsString::kSize,
3158                      result,
3159                      scratch1,
3160                      scratch2,
3161                      gc_required,
3162                      TAG_OBJECT);
3163   InitializeNewString(result,
3164                       length,
3165                       Heap::kConsAsciiStringMapRootIndex,
3166                       scratch1,
3167                       scratch2);
3168 }
3169 
3170 
AllocateTwoByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3171 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3172                                                  Register length,
3173                                                  Register scratch1,
3174                                                  Register scratch2,
3175                                                  Label* gc_required) {
3176   AllocateInNewSpace(SlicedString::kSize,
3177                      result,
3178                      scratch1,
3179                      scratch2,
3180                      gc_required,
3181                      TAG_OBJECT);
3182 
3183   InitializeNewString(result,
3184                       length,
3185                       Heap::kSlicedStringMapRootIndex,
3186                       scratch1,
3187                       scratch2);
3188 }
3189 
3190 
AllocateAsciiSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3191 void MacroAssembler::AllocateAsciiSlicedString(Register result,
3192                                                Register length,
3193                                                Register scratch1,
3194                                                Register scratch2,
3195                                                Label* gc_required) {
3196   AllocateInNewSpace(SlicedString::kSize,
3197                      result,
3198                      scratch1,
3199                      scratch2,
3200                      gc_required,
3201                      TAG_OBJECT);
3202 
3203   InitializeNewString(result,
3204                       length,
3205                       Heap::kSlicedAsciiStringMapRootIndex,
3206                       scratch1,
3207                       scratch2);
3208 }
3209 
3210 
3211 // Allocates a heap number or jumps to the label if the young space is full and
3212 // a scavenge is needed.
AllocateHeapNumber(Register result,Register scratch1,Register scratch2,Register heap_number_map,Label * need_gc)3213 void MacroAssembler::AllocateHeapNumber(Register result,
3214                                         Register scratch1,
3215                                         Register scratch2,
3216                                         Register heap_number_map,
3217                                         Label* need_gc) {
3218   // Allocate an object in the heap for the heap number and tag it as a heap
3219   // object.
3220   AllocateInNewSpace(HeapNumber::kSize,
3221                      result,
3222                      scratch1,
3223                      scratch2,
3224                      need_gc,
3225                      TAG_OBJECT);
3226 
3227   // Store heap number map in the allocated object.
3228   AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3229   sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
3230 }
3231 
3232 
AllocateHeapNumberWithValue(Register result,FPURegister value,Register scratch1,Register scratch2,Label * gc_required)3233 void MacroAssembler::AllocateHeapNumberWithValue(Register result,
3234                                                  FPURegister value,
3235                                                  Register scratch1,
3236                                                  Register scratch2,
3237                                                  Label* gc_required) {
3238   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
3239   AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
3240   sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
3241 }
3242 
3243 
3244 // Copies a fixed number of fields of heap objects from src to dst.
CopyFields(Register dst,Register src,RegList temps,int field_count)3245 void MacroAssembler::CopyFields(Register dst,
3246                                 Register src,
3247                                 RegList temps,
3248                                 int field_count) {
3249   ASSERT((temps & dst.bit()) == 0);
3250   ASSERT((temps & src.bit()) == 0);
3251   // Primitive implementation using only one temporary register.
3252 
3253   Register tmp = no_reg;
3254   // Find a temp register in temps list.
3255   for (int i = 0; i < kNumRegisters; i++) {
3256     if ((temps & (1 << i)) != 0) {
3257       tmp.code_ = i;
3258       break;
3259     }
3260   }
3261   ASSERT(!tmp.is(no_reg));
3262 
3263   for (int i = 0; i < field_count; i++) {
3264     lw(tmp, FieldMemOperand(src, i * kPointerSize));
3265     sw(tmp, FieldMemOperand(dst, i * kPointerSize));
3266   }
3267 }
3268 
3269 
CopyBytes(Register src,Register dst,Register length,Register scratch)3270 void MacroAssembler::CopyBytes(Register src,
3271                                Register dst,
3272                                Register length,
3273                                Register scratch) {
3274   Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done;
3275 
3276   // Align src before copying in word size chunks.
3277   bind(&align_loop);
3278   Branch(&done, eq, length, Operand(zero_reg));
3279   bind(&align_loop_1);
3280   And(scratch, src, kPointerSize - 1);
3281   Branch(&word_loop, eq, scratch, Operand(zero_reg));
3282   lbu(scratch, MemOperand(src));
3283   Addu(src, src, 1);
3284   sb(scratch, MemOperand(dst));
3285   Addu(dst, dst, 1);
3286   Subu(length, length, Operand(1));
3287   Branch(&byte_loop_1, ne, length, Operand(zero_reg));
3288 
3289   // Copy bytes in word size chunks.
3290   bind(&word_loop);
3291   if (emit_debug_code()) {
3292     And(scratch, src, kPointerSize - 1);
3293     Assert(eq, "Expecting alignment for CopyBytes",
3294         scratch, Operand(zero_reg));
3295   }
3296   Branch(&byte_loop, lt, length, Operand(kPointerSize));
3297   lw(scratch, MemOperand(src));
3298   Addu(src, src, kPointerSize);
3299 
3300   // TODO(kalmard) check if this can be optimized to use sw in most cases.
3301   // Can't use unaligned access - copy byte by byte.
3302   sb(scratch, MemOperand(dst, 0));
3303   srl(scratch, scratch, 8);
3304   sb(scratch, MemOperand(dst, 1));
3305   srl(scratch, scratch, 8);
3306   sb(scratch, MemOperand(dst, 2));
3307   srl(scratch, scratch, 8);
3308   sb(scratch, MemOperand(dst, 3));
3309   Addu(dst, dst, 4);
3310 
3311   Subu(length, length, Operand(kPointerSize));
3312   Branch(&word_loop);
3313 
3314   // Copy the last bytes if any left.
3315   bind(&byte_loop);
3316   Branch(&done, eq, length, Operand(zero_reg));
3317   bind(&byte_loop_1);
3318   lbu(scratch, MemOperand(src));
3319   Addu(src, src, 1);
3320   sb(scratch, MemOperand(dst));
3321   Addu(dst, dst, 1);
3322   Subu(length, length, Operand(1));
3323   Branch(&byte_loop_1, ne, length, Operand(zero_reg));
3324   bind(&done);
3325 }
3326 
3327 
InitializeFieldsWithFiller(Register start_offset,Register end_offset,Register filler)3328 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
3329                                                 Register end_offset,
3330                                                 Register filler) {
3331   Label loop, entry;
3332   Branch(&entry);
3333   bind(&loop);
3334   sw(filler, MemOperand(start_offset));
3335   Addu(start_offset, start_offset, kPointerSize);
3336   bind(&entry);
3337   Branch(&loop, lt, start_offset, Operand(end_offset));
3338 }
3339 
3340 
CheckFastElements(Register map,Register scratch,Label * fail)3341 void MacroAssembler::CheckFastElements(Register map,
3342                                        Register scratch,
3343                                        Label* fail) {
3344   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
3345   STATIC_ASSERT(FAST_ELEMENTS == 1);
3346   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3347   Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastElementValue));
3348 }
3349 
3350 
CheckFastObjectElements(Register map,Register scratch,Label * fail)3351 void MacroAssembler::CheckFastObjectElements(Register map,
3352                                              Register scratch,
3353                                              Label* fail) {
3354   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
3355   STATIC_ASSERT(FAST_ELEMENTS == 1);
3356   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3357   Branch(fail, ls, scratch,
3358          Operand(Map::kMaximumBitField2FastSmiOnlyElementValue));
3359   Branch(fail, hi, scratch,
3360          Operand(Map::kMaximumBitField2FastElementValue));
3361 }
3362 
3363 
CheckFastSmiOnlyElements(Register map,Register scratch,Label * fail)3364 void MacroAssembler::CheckFastSmiOnlyElements(Register map,
3365                                               Register scratch,
3366                                               Label* fail) {
3367   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
3368   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3369   Branch(fail, hi, scratch,
3370          Operand(Map::kMaximumBitField2FastSmiOnlyElementValue));
3371 }
3372 
3373 
StoreNumberToDoubleElements(Register value_reg,Register key_reg,Register receiver_reg,Register elements_reg,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Label * fail)3374 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3375                                                  Register key_reg,
3376                                                  Register receiver_reg,
3377                                                  Register elements_reg,
3378                                                  Register scratch1,
3379                                                  Register scratch2,
3380                                                  Register scratch3,
3381                                                  Register scratch4,
3382                                                  Label* fail) {
3383   Label smi_value, maybe_nan, have_double_value, is_nan, done;
3384   Register mantissa_reg = scratch2;
3385   Register exponent_reg = scratch3;
3386 
3387   // Handle smi values specially.
3388   JumpIfSmi(value_reg, &smi_value);
3389 
3390   // Ensure that the object is a heap number
3391   CheckMap(value_reg,
3392            scratch1,
3393            Heap::kHeapNumberMapRootIndex,
3394            fail,
3395            DONT_DO_SMI_CHECK);
3396 
3397   // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
3398   // in the exponent.
3399   li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
3400   lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
3401   Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1));
3402 
3403   lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
3404 
3405   bind(&have_double_value);
3406   sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize);
3407   Addu(scratch1, scratch1, elements_reg);
3408   sw(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize));
3409   uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
3410   sw(exponent_reg, FieldMemOperand(scratch1, offset));
3411   jmp(&done);
3412 
3413   bind(&maybe_nan);
3414   // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
3415   // it's an Infinity, and the non-NaN code path applies.
3416   Branch(&is_nan, gt, exponent_reg, Operand(scratch1));
3417   lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
3418   Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg));
3419   bind(&is_nan);
3420   // Load canonical NaN for storing into the double array.
3421   uint64_t nan_int64 = BitCast<uint64_t>(
3422       FixedDoubleArray::canonical_not_the_hole_nan_as_double());
3423   li(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64)));
3424   li(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32)));
3425   jmp(&have_double_value);
3426 
3427   bind(&smi_value);
3428   Addu(scratch1, elements_reg,
3429       Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
3430   sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
3431   Addu(scratch1, scratch1, scratch2);
3432   // scratch1 is now effective address of the double element
3433 
3434   FloatingPointHelper::Destination destination;
3435   if (CpuFeatures::IsSupported(FPU)) {
3436     destination = FloatingPointHelper::kFPURegisters;
3437   } else {
3438     destination = FloatingPointHelper::kCoreRegisters;
3439   }
3440 
3441   Register untagged_value = receiver_reg;
3442   SmiUntag(untagged_value, value_reg);
3443   FloatingPointHelper::ConvertIntToDouble(this,
3444                                           untagged_value,
3445                                           destination,
3446                                           f0,
3447                                           mantissa_reg,
3448                                           exponent_reg,
3449                                           scratch4,
3450                                           f2);
3451   if (destination == FloatingPointHelper::kFPURegisters) {
3452     CpuFeatures::Scope scope(FPU);
3453     sdc1(f0, MemOperand(scratch1, 0));
3454   } else {
3455     sw(mantissa_reg, MemOperand(scratch1, 0));
3456     sw(exponent_reg, MemOperand(scratch1, Register::kSizeInBytes));
3457   }
3458   bind(&done);
3459 }
3460 
3461 
CompareMapAndBranch(Register obj,Register scratch,Handle<Map> map,Label * early_success,Condition cond,Label * branch_to,CompareMapMode mode)3462 void MacroAssembler::CompareMapAndBranch(Register obj,
3463                                          Register scratch,
3464                                          Handle<Map> map,
3465                                          Label* early_success,
3466                                          Condition cond,
3467                                          Label* branch_to,
3468                                          CompareMapMode mode) {
3469   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3470   Operand right = Operand(map);
3471   if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) {
3472     Map* transitioned_fast_element_map(
3473         map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL));
3474     ASSERT(transitioned_fast_element_map == NULL ||
3475            map->elements_kind() != FAST_ELEMENTS);
3476     if (transitioned_fast_element_map != NULL) {
3477       Branch(early_success, eq, scratch, right);
3478       right = Operand(Handle<Map>(transitioned_fast_element_map));
3479     }
3480 
3481     Map* transitioned_double_map(
3482         map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL));
3483     ASSERT(transitioned_double_map == NULL ||
3484            map->elements_kind() == FAST_SMI_ONLY_ELEMENTS);
3485     if (transitioned_double_map != NULL) {
3486       Branch(early_success, eq, scratch, right);
3487       right = Operand(Handle<Map>(transitioned_double_map));
3488     }
3489   }
3490 
3491   Branch(branch_to, cond, scratch, right);
3492 }
3493 
3494 
CheckMap(Register obj,Register scratch,Handle<Map> map,Label * fail,SmiCheckType smi_check_type,CompareMapMode mode)3495 void MacroAssembler::CheckMap(Register obj,
3496                               Register scratch,
3497                               Handle<Map> map,
3498                               Label* fail,
3499                               SmiCheckType smi_check_type,
3500                               CompareMapMode mode) {
3501   if (smi_check_type == DO_SMI_CHECK) {
3502     JumpIfSmi(obj, fail);
3503   }
3504   Label success;
3505   CompareMapAndBranch(obj, scratch, map, &success, ne, fail, mode);
3506   bind(&success);
3507 }
3508 
3509 
DispatchMap(Register obj,Register scratch,Handle<Map> map,Handle<Code> success,SmiCheckType smi_check_type)3510 void MacroAssembler::DispatchMap(Register obj,
3511                                  Register scratch,
3512                                  Handle<Map> map,
3513                                  Handle<Code> success,
3514                                  SmiCheckType smi_check_type) {
3515   Label fail;
3516   if (smi_check_type == DO_SMI_CHECK) {
3517     JumpIfSmi(obj, &fail);
3518   }
3519   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3520   Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map));
3521   bind(&fail);
3522 }
3523 
3524 
CheckMap(Register obj,Register scratch,Heap::RootListIndex index,Label * fail,SmiCheckType smi_check_type)3525 void MacroAssembler::CheckMap(Register obj,
3526                               Register scratch,
3527                               Heap::RootListIndex index,
3528                               Label* fail,
3529                               SmiCheckType smi_check_type) {
3530   if (smi_check_type == DO_SMI_CHECK) {
3531     JumpIfSmi(obj, fail);
3532   }
3533   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3534   LoadRoot(at, index);
3535   Branch(fail, ne, scratch, Operand(at));
3536 }
3537 
3538 
GetCFunctionDoubleResult(const DoubleRegister dst)3539 void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) {
3540   CpuFeatures::Scope scope(FPU);
3541   if (IsMipsSoftFloatABI) {
3542     Move(dst, v0, v1);
3543   } else {
3544     Move(dst, f0);  // Reg f0 is o32 ABI FP return value.
3545   }
3546 }
3547 
3548 
SetCallCDoubleArguments(DoubleRegister dreg)3549 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) {
3550   CpuFeatures::Scope scope(FPU);
3551   if (!IsMipsSoftFloatABI) {
3552     Move(f12, dreg);
3553   } else {
3554     Move(a0, a1, dreg);
3555   }
3556 }
3557 
3558 
SetCallCDoubleArguments(DoubleRegister dreg1,DoubleRegister dreg2)3559 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1,
3560                                              DoubleRegister dreg2) {
3561   CpuFeatures::Scope scope(FPU);
3562   if (!IsMipsSoftFloatABI) {
3563     if (dreg2.is(f12)) {
3564       ASSERT(!dreg1.is(f14));
3565       Move(f14, dreg2);
3566       Move(f12, dreg1);
3567     } else {
3568       Move(f12, dreg1);
3569       Move(f14, dreg2);
3570     }
3571   } else {
3572     Move(a0, a1, dreg1);
3573     Move(a2, a3, dreg2);
3574   }
3575 }
3576 
3577 
SetCallCDoubleArguments(DoubleRegister dreg,Register reg)3578 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg,
3579                                              Register reg) {
3580   CpuFeatures::Scope scope(FPU);
3581   if (!IsMipsSoftFloatABI) {
3582     Move(f12, dreg);
3583     Move(a2, reg);
3584   } else {
3585     Move(a2, reg);
3586     Move(a0, a1, dreg);
3587   }
3588 }
3589 
3590 
SetCallKind(Register dst,CallKind call_kind)3591 void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
3592   // This macro takes the dst register to make the code more readable
3593   // at the call sites. However, the dst register has to be t1 to
3594   // follow the calling convention which requires the call type to be
3595   // in t1.
3596   ASSERT(dst.is(t1));
3597   if (call_kind == CALL_AS_FUNCTION) {
3598     li(dst, Operand(Smi::FromInt(1)));
3599   } else {
3600     li(dst, Operand(Smi::FromInt(0)));
3601   }
3602 }
3603 
3604 
3605 // -----------------------------------------------------------------------------
3606 // JavaScript invokes.
3607 
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Handle<Code> code_constant,Register code_reg,Label * done,bool * definitely_mismatches,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)3608 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
3609                                     const ParameterCount& actual,
3610                                     Handle<Code> code_constant,
3611                                     Register code_reg,
3612                                     Label* done,
3613                                     bool* definitely_mismatches,
3614                                     InvokeFlag flag,
3615                                     const CallWrapper& call_wrapper,
3616                                     CallKind call_kind) {
3617   bool definitely_matches = false;
3618   *definitely_mismatches = false;
3619   Label regular_invoke;
3620 
3621   // Check whether the expected and actual arguments count match. If not,
3622   // setup registers according to contract with ArgumentsAdaptorTrampoline:
3623   //  a0: actual arguments count
3624   //  a1: function (passed through to callee)
3625   //  a2: expected arguments count
3626   //  a3: callee code entry
3627 
3628   // The code below is made a lot easier because the calling code already sets
3629   // up actual and expected registers according to the contract if values are
3630   // passed in registers.
3631   ASSERT(actual.is_immediate() || actual.reg().is(a0));
3632   ASSERT(expected.is_immediate() || expected.reg().is(a2));
3633   ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
3634 
3635   if (expected.is_immediate()) {
3636     ASSERT(actual.is_immediate());
3637     if (expected.immediate() == actual.immediate()) {
3638       definitely_matches = true;
3639     } else {
3640       li(a0, Operand(actual.immediate()));
3641       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3642       if (expected.immediate() == sentinel) {
3643         // Don't worry about adapting arguments for builtins that
3644         // don't want that done. Skip adaption code by making it look
3645         // like we have a match between expected and actual number of
3646         // arguments.
3647         definitely_matches = true;
3648       } else {
3649         *definitely_mismatches = true;
3650         li(a2, Operand(expected.immediate()));
3651       }
3652     }
3653   } else if (actual.is_immediate()) {
3654     Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
3655     li(a0, Operand(actual.immediate()));
3656   } else {
3657     Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
3658   }
3659 
3660   if (!definitely_matches) {
3661     if (!code_constant.is_null()) {
3662       li(a3, Operand(code_constant));
3663       addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
3664     }
3665 
3666     Handle<Code> adaptor =
3667         isolate()->builtins()->ArgumentsAdaptorTrampoline();
3668     if (flag == CALL_FUNCTION) {
3669       call_wrapper.BeforeCall(CallSize(adaptor));
3670       SetCallKind(t1, call_kind);
3671       Call(adaptor);
3672       call_wrapper.AfterCall();
3673       if (!*definitely_mismatches) {
3674         Branch(done);
3675       }
3676     } else {
3677       SetCallKind(t1, call_kind);
3678       Jump(adaptor, RelocInfo::CODE_TARGET);
3679     }
3680     bind(&regular_invoke);
3681   }
3682 }
3683 
3684 
InvokeCode(Register code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)3685 void MacroAssembler::InvokeCode(Register code,
3686                                 const ParameterCount& expected,
3687                                 const ParameterCount& actual,
3688                                 InvokeFlag flag,
3689                                 const CallWrapper& call_wrapper,
3690                                 CallKind call_kind) {
3691   // You can't call a function without a valid frame.
3692   ASSERT(flag == JUMP_FUNCTION || has_frame());
3693 
3694   Label done;
3695 
3696   bool definitely_mismatches = false;
3697   InvokePrologue(expected, actual, Handle<Code>::null(), code,
3698                  &done, &definitely_mismatches, flag,
3699                  call_wrapper, call_kind);
3700   if (!definitely_mismatches) {
3701     if (flag == CALL_FUNCTION) {
3702       call_wrapper.BeforeCall(CallSize(code));
3703       SetCallKind(t1, call_kind);
3704       Call(code);
3705       call_wrapper.AfterCall();
3706     } else {
3707       ASSERT(flag == JUMP_FUNCTION);
3708       SetCallKind(t1, call_kind);
3709       Jump(code);
3710     }
3711     // Continue here if InvokePrologue does handle the invocation due to
3712     // mismatched parameter counts.
3713     bind(&done);
3714   }
3715 }
3716 
3717 
InvokeCode(Handle<Code> code,const ParameterCount & expected,const ParameterCount & actual,RelocInfo::Mode rmode,InvokeFlag flag,CallKind call_kind)3718 void MacroAssembler::InvokeCode(Handle<Code> code,
3719                                 const ParameterCount& expected,
3720                                 const ParameterCount& actual,
3721                                 RelocInfo::Mode rmode,
3722                                 InvokeFlag flag,
3723                                 CallKind call_kind) {
3724   // You can't call a function without a valid frame.
3725   ASSERT(flag == JUMP_FUNCTION || has_frame());
3726 
3727   Label done;
3728 
3729   bool definitely_mismatches = false;
3730   InvokePrologue(expected, actual, code, no_reg,
3731                  &done, &definitely_mismatches, flag,
3732                  NullCallWrapper(), call_kind);
3733   if (!definitely_mismatches) {
3734     if (flag == CALL_FUNCTION) {
3735       SetCallKind(t1, call_kind);
3736       Call(code, rmode);
3737     } else {
3738       SetCallKind(t1, call_kind);
3739       Jump(code, rmode);
3740     }
3741     // Continue here if InvokePrologue does handle the invocation due to
3742     // mismatched parameter counts.
3743     bind(&done);
3744   }
3745 }
3746 
3747 
InvokeFunction(Register function,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)3748 void MacroAssembler::InvokeFunction(Register function,
3749                                     const ParameterCount& actual,
3750                                     InvokeFlag flag,
3751                                     const CallWrapper& call_wrapper,
3752                                     CallKind call_kind) {
3753   // You can't call a function without a valid frame.
3754   ASSERT(flag == JUMP_FUNCTION || has_frame());
3755 
3756   // Contract with called JS functions requires that function is passed in a1.
3757   ASSERT(function.is(a1));
3758   Register expected_reg = a2;
3759   Register code_reg = a3;
3760 
3761   lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
3762   lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
3763   lw(expected_reg,
3764       FieldMemOperand(code_reg,
3765                       SharedFunctionInfo::kFormalParameterCountOffset));
3766   sra(expected_reg, expected_reg, kSmiTagSize);
3767   lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
3768 
3769   ParameterCount expected(expected_reg);
3770   InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind);
3771 }
3772 
3773 
InvokeFunction(Handle<JSFunction> function,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)3774 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
3775                                     const ParameterCount& actual,
3776                                     InvokeFlag flag,
3777                                     const CallWrapper& call_wrapper,
3778                                     CallKind call_kind) {
3779   // You can't call a function without a valid frame.
3780   ASSERT(flag == JUMP_FUNCTION || has_frame());
3781 
3782   // Get the function and setup the context.
3783   LoadHeapObject(a1, function);
3784   lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
3785 
3786   ParameterCount expected(function->shared()->formal_parameter_count());
3787   // We call indirectly through the code field in the function to
3788   // allow recompilation to take effect without changing any of the
3789   // call sites.
3790   lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
3791   InvokeCode(a3, expected, actual, flag, call_wrapper, call_kind);
3792 }
3793 
3794 
IsObjectJSObjectType(Register heap_object,Register map,Register scratch,Label * fail)3795 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
3796                                           Register map,
3797                                           Register scratch,
3798                                           Label* fail) {
3799   lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
3800   IsInstanceJSObjectType(map, scratch, fail);
3801 }
3802 
3803 
IsInstanceJSObjectType(Register map,Register scratch,Label * fail)3804 void MacroAssembler::IsInstanceJSObjectType(Register map,
3805                                             Register scratch,
3806                                             Label* fail) {
3807   lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
3808   Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
3809   Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
3810 }
3811 
3812 
IsObjectJSStringType(Register object,Register scratch,Label * fail)3813 void MacroAssembler::IsObjectJSStringType(Register object,
3814                                           Register scratch,
3815                                           Label* fail) {
3816   ASSERT(kNotStringTag != 0);
3817 
3818   lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3819   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3820   And(scratch, scratch, Operand(kIsNotStringMask));
3821   Branch(fail, ne, scratch, Operand(zero_reg));
3822 }
3823 
3824 
3825 // ---------------------------------------------------------------------------
3826 // Support functions.
3827 
3828 
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss,bool miss_on_bound_function)3829 void MacroAssembler::TryGetFunctionPrototype(Register function,
3830                                              Register result,
3831                                              Register scratch,
3832                                              Label* miss,
3833                                              bool miss_on_bound_function) {
3834   // Check that the receiver isn't a smi.
3835   JumpIfSmi(function, miss);
3836 
3837   // Check that the function really is a function.  Load map into result reg.
3838   GetObjectType(function, result, scratch);
3839   Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
3840 
3841   if (miss_on_bound_function) {
3842     lw(scratch,
3843        FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3844     lw(scratch,
3845        FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3846     And(scratch, scratch,
3847         Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction)));
3848     Branch(miss, ne, scratch, Operand(zero_reg));
3849   }
3850 
3851   // Make sure that the function has an instance prototype.
3852   Label non_instance;
3853   lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
3854   And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
3855   Branch(&non_instance, ne, scratch, Operand(zero_reg));
3856 
3857   // Get the prototype or initial map from the function.
3858   lw(result,
3859      FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3860 
3861   // If the prototype or initial map is the hole, don't return it and
3862   // simply miss the cache instead. This will allow us to allocate a
3863   // prototype object on-demand in the runtime system.
3864   LoadRoot(t8, Heap::kTheHoleValueRootIndex);
3865   Branch(miss, eq, result, Operand(t8));
3866 
3867   // If the function does not have an initial map, we're done.
3868   Label done;
3869   GetObjectType(result, scratch, scratch);
3870   Branch(&done, ne, scratch, Operand(MAP_TYPE));
3871 
3872   // Get the prototype from the initial map.
3873   lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
3874   jmp(&done);
3875 
3876   // Non-instance prototype: Fetch prototype from constructor field
3877   // in initial map.
3878   bind(&non_instance);
3879   lw(result, FieldMemOperand(result, Map::kConstructorOffset));
3880 
3881   // All done.
3882   bind(&done);
3883 }
3884 
3885 
GetObjectType(Register object,Register map,Register type_reg)3886 void MacroAssembler::GetObjectType(Register object,
3887                                    Register map,
3888                                    Register type_reg) {
3889   lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
3890   lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3891 }
3892 
3893 
3894 // -----------------------------------------------------------------------------
3895 // Runtime calls.
3896 
CallStub(CodeStub * stub,Condition cond,Register r1,const Operand & r2,BranchDelaySlot bd)3897 void MacroAssembler::CallStub(CodeStub* stub,
3898                               Condition cond,
3899                               Register r1,
3900                               const Operand& r2,
3901                               BranchDelaySlot bd) {
3902   ASSERT(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
3903   Call(stub->GetCode(), RelocInfo::CODE_TARGET, kNoASTId, cond, r1, r2, bd);
3904 }
3905 
3906 
TailCallStub(CodeStub * stub)3907 void MacroAssembler::TailCallStub(CodeStub* stub) {
3908   ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe());
3909   Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
3910 }
3911 
3912 
AddressOffset(ExternalReference ref0,ExternalReference ref1)3913 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
3914   return ref0.address() - ref1.address();
3915 }
3916 
3917 
CallApiFunctionAndReturn(ExternalReference function,int stack_space)3918 void MacroAssembler::CallApiFunctionAndReturn(ExternalReference function,
3919                                               int stack_space) {
3920   ExternalReference next_address =
3921       ExternalReference::handle_scope_next_address();
3922   const int kNextOffset = 0;
3923   const int kLimitOffset = AddressOffset(
3924       ExternalReference::handle_scope_limit_address(),
3925       next_address);
3926   const int kLevelOffset = AddressOffset(
3927       ExternalReference::handle_scope_level_address(),
3928       next_address);
3929 
3930   // Allocate HandleScope in callee-save registers.
3931   li(s3, Operand(next_address));
3932   lw(s0, MemOperand(s3, kNextOffset));
3933   lw(s1, MemOperand(s3, kLimitOffset));
3934   lw(s2, MemOperand(s3, kLevelOffset));
3935   Addu(s2, s2, Operand(1));
3936   sw(s2, MemOperand(s3, kLevelOffset));
3937 
3938   // The O32 ABI requires us to pass a pointer in a0 where the returned struct
3939   // (4 bytes) will be placed. This is also built into the Simulator.
3940   // Set up the pointer to the returned value (a0). It was allocated in
3941   // EnterExitFrame.
3942   addiu(a0, fp, ExitFrameConstants::kStackSpaceOffset);
3943 
3944   // Native call returns to the DirectCEntry stub which redirects to the
3945   // return address pushed on stack (could have moved after GC).
3946   // DirectCEntry stub itself is generated early and never moves.
3947   DirectCEntryStub stub;
3948   stub.GenerateCall(this, function);
3949 
3950   // As mentioned above, on MIPS a pointer is returned - we need to dereference
3951   // it to get the actual return value (which is also a pointer).
3952   lw(v0, MemOperand(v0));
3953 
3954   Label promote_scheduled_exception;
3955   Label delete_allocated_handles;
3956   Label leave_exit_frame;
3957 
3958   // If result is non-zero, dereference to get the result value
3959   // otherwise set it to undefined.
3960   Label skip;
3961   LoadRoot(a0, Heap::kUndefinedValueRootIndex);
3962   Branch(&skip, eq, v0, Operand(zero_reg));
3963   lw(a0, MemOperand(v0));
3964   bind(&skip);
3965   mov(v0, a0);
3966 
3967   // No more valid handles (the result handle was the last one). Restore
3968   // previous handle scope.
3969   sw(s0, MemOperand(s3, kNextOffset));
3970   if (emit_debug_code()) {
3971     lw(a1, MemOperand(s3, kLevelOffset));
3972     Check(eq, "Unexpected level after return from api call", a1, Operand(s2));
3973   }
3974   Subu(s2, s2, Operand(1));
3975   sw(s2, MemOperand(s3, kLevelOffset));
3976   lw(at, MemOperand(s3, kLimitOffset));
3977   Branch(&delete_allocated_handles, ne, s1, Operand(at));
3978 
3979   // Check if the function scheduled an exception.
3980   bind(&leave_exit_frame);
3981   LoadRoot(t0, Heap::kTheHoleValueRootIndex);
3982   li(at, Operand(ExternalReference::scheduled_exception_address(isolate())));
3983   lw(t1, MemOperand(at));
3984   Branch(&promote_scheduled_exception, ne, t0, Operand(t1));
3985   li(s0, Operand(stack_space));
3986   LeaveExitFrame(false, s0, true);
3987 
3988   bind(&promote_scheduled_exception);
3989   TailCallExternalReference(
3990       ExternalReference(Runtime::kPromoteScheduledException, isolate()),
3991       0,
3992       1);
3993 
3994   // HandleScope limit has changed. Delete allocated extensions.
3995   bind(&delete_allocated_handles);
3996   sw(s1, MemOperand(s3, kLimitOffset));
3997   mov(s0, v0);
3998   mov(a0, v0);
3999   PrepareCallCFunction(1, s1);
4000   li(a0, Operand(ExternalReference::isolate_address()));
4001   CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
4002       1);
4003   mov(v0, s0);
4004   jmp(&leave_exit_frame);
4005 }
4006 
4007 
AllowThisStubCall(CodeStub * stub)4008 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
4009   if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false;
4010   return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe();
4011 }
4012 
4013 
IllegalOperation(int num_arguments)4014 void MacroAssembler::IllegalOperation(int num_arguments) {
4015   if (num_arguments > 0) {
4016     addiu(sp, sp, num_arguments * kPointerSize);
4017   }
4018   LoadRoot(v0, Heap::kUndefinedValueRootIndex);
4019 }
4020 
4021 
IndexFromHash(Register hash,Register index)4022 void MacroAssembler::IndexFromHash(Register hash,
4023                                    Register index) {
4024   // If the hash field contains an array index pick it out. The assert checks
4025   // that the constants for the maximum number of digits for an array index
4026   // cached in the hash field and the number of bits reserved for it does not
4027   // conflict.
4028   ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
4029          (1 << String::kArrayIndexValueBits));
4030   // We want the smi-tagged index in key.  kArrayIndexValueMask has zeros in
4031   // the low kHashShift bits.
4032   STATIC_ASSERT(kSmiTag == 0);
4033   Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
4034   sll(index, hash, kSmiTagSize);
4035 }
4036 
4037 
ObjectToDoubleFPURegister(Register object,FPURegister result,Register scratch1,Register scratch2,Register heap_number_map,Label * not_number,ObjectToDoubleFlags flags)4038 void MacroAssembler::ObjectToDoubleFPURegister(Register object,
4039                                                FPURegister result,
4040                                                Register scratch1,
4041                                                Register scratch2,
4042                                                Register heap_number_map,
4043                                                Label* not_number,
4044                                                ObjectToDoubleFlags flags) {
4045   Label done;
4046   if ((flags & OBJECT_NOT_SMI) == 0) {
4047     Label not_smi;
4048     JumpIfNotSmi(object, &not_smi);
4049     // Remove smi tag and convert to double.
4050     sra(scratch1, object, kSmiTagSize);
4051     mtc1(scratch1, result);
4052     cvt_d_w(result, result);
4053     Branch(&done);
4054     bind(&not_smi);
4055   }
4056   // Check for heap number and load double value from it.
4057   lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
4058   Branch(not_number, ne, scratch1, Operand(heap_number_map));
4059 
4060   if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
4061     // If exponent is all ones the number is either a NaN or +/-Infinity.
4062     Register exponent = scratch1;
4063     Register mask_reg = scratch2;
4064     lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
4065     li(mask_reg, HeapNumber::kExponentMask);
4066 
4067     And(exponent, exponent, mask_reg);
4068     Branch(not_number, eq, exponent, Operand(mask_reg));
4069   }
4070   ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
4071   bind(&done);
4072 }
4073 
4074 
SmiToDoubleFPURegister(Register smi,FPURegister value,Register scratch1)4075 void MacroAssembler::SmiToDoubleFPURegister(Register smi,
4076                                             FPURegister value,
4077                                             Register scratch1) {
4078   sra(scratch1, smi, kSmiTagSize);
4079   mtc1(scratch1, value);
4080   cvt_d_w(value, value);
4081 }
4082 
4083 
AdduAndCheckForOverflow(Register dst,Register left,Register right,Register overflow_dst,Register scratch)4084 void MacroAssembler::AdduAndCheckForOverflow(Register dst,
4085                                              Register left,
4086                                              Register right,
4087                                              Register overflow_dst,
4088                                              Register scratch) {
4089   ASSERT(!dst.is(overflow_dst));
4090   ASSERT(!dst.is(scratch));
4091   ASSERT(!overflow_dst.is(scratch));
4092   ASSERT(!overflow_dst.is(left));
4093   ASSERT(!overflow_dst.is(right));
4094 
4095   if (left.is(right) && dst.is(left)) {
4096     ASSERT(!dst.is(t9));
4097     ASSERT(!scratch.is(t9));
4098     ASSERT(!left.is(t9));
4099     ASSERT(!right.is(t9));
4100     ASSERT(!overflow_dst.is(t9));
4101     mov(t9, right);
4102     right = t9;
4103   }
4104 
4105   if (dst.is(left)) {
4106     mov(scratch, left);  // Preserve left.
4107     addu(dst, left, right);  // Left is overwritten.
4108     xor_(scratch, dst, scratch);  // Original left.
4109     xor_(overflow_dst, dst, right);
4110     and_(overflow_dst, overflow_dst, scratch);
4111   } else if (dst.is(right)) {
4112     mov(scratch, right);  // Preserve right.
4113     addu(dst, left, right);  // Right is overwritten.
4114     xor_(scratch, dst, scratch);  // Original right.
4115     xor_(overflow_dst, dst, left);
4116     and_(overflow_dst, overflow_dst, scratch);
4117   } else {
4118     addu(dst, left, right);
4119     xor_(overflow_dst, dst, left);
4120     xor_(scratch, dst, right);
4121     and_(overflow_dst, scratch, overflow_dst);
4122   }
4123 }
4124 
4125 
SubuAndCheckForOverflow(Register dst,Register left,Register right,Register overflow_dst,Register scratch)4126 void MacroAssembler::SubuAndCheckForOverflow(Register dst,
4127                                              Register left,
4128                                              Register right,
4129                                              Register overflow_dst,
4130                                              Register scratch) {
4131   ASSERT(!dst.is(overflow_dst));
4132   ASSERT(!dst.is(scratch));
4133   ASSERT(!overflow_dst.is(scratch));
4134   ASSERT(!overflow_dst.is(left));
4135   ASSERT(!overflow_dst.is(right));
4136   ASSERT(!scratch.is(left));
4137   ASSERT(!scratch.is(right));
4138 
4139   // This happens with some crankshaft code. Since Subu works fine if
4140   // left == right, let's not make that restriction here.
4141   if (left.is(right)) {
4142     mov(dst, zero_reg);
4143     mov(overflow_dst, zero_reg);
4144     return;
4145   }
4146 
4147   if (dst.is(left)) {
4148     mov(scratch, left);  // Preserve left.
4149     subu(dst, left, right);  // Left is overwritten.
4150     xor_(overflow_dst, dst, scratch);  // scratch is original left.
4151     xor_(scratch, scratch, right);  // scratch is original left.
4152     and_(overflow_dst, scratch, overflow_dst);
4153   } else if (dst.is(right)) {
4154     mov(scratch, right);  // Preserve right.
4155     subu(dst, left, right);  // Right is overwritten.
4156     xor_(overflow_dst, dst, left);
4157     xor_(scratch, left, scratch);  // Original right.
4158     and_(overflow_dst, scratch, overflow_dst);
4159   } else {
4160     subu(dst, left, right);
4161     xor_(overflow_dst, dst, left);
4162     xor_(scratch, left, right);
4163     and_(overflow_dst, scratch, overflow_dst);
4164   }
4165 }
4166 
4167 
CallRuntime(const Runtime::Function * f,int num_arguments)4168 void MacroAssembler::CallRuntime(const Runtime::Function* f,
4169                                  int num_arguments) {
4170   // All parameters are on the stack. v0 has the return value after call.
4171 
4172   // If the expected number of arguments of the runtime function is
4173   // constant, we check that the actual number of arguments match the
4174   // expectation.
4175   if (f->nargs >= 0 && f->nargs != num_arguments) {
4176     IllegalOperation(num_arguments);
4177     return;
4178   }
4179 
4180   // TODO(1236192): Most runtime routines don't need the number of
4181   // arguments passed in because it is constant. At some point we
4182   // should remove this need and make the runtime routine entry code
4183   // smarter.
4184   PrepareCEntryArgs(num_arguments);
4185   PrepareCEntryFunction(ExternalReference(f, isolate()));
4186   CEntryStub stub(1);
4187   CallStub(&stub);
4188 }
4189 
4190 
CallRuntimeSaveDoubles(Runtime::FunctionId id)4191 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
4192   const Runtime::Function* function = Runtime::FunctionForId(id);
4193   PrepareCEntryArgs(function->nargs);
4194   PrepareCEntryFunction(ExternalReference(function, isolate()));
4195   CEntryStub stub(1, kSaveFPRegs);
4196   CallStub(&stub);
4197 }
4198 
4199 
CallRuntime(Runtime::FunctionId fid,int num_arguments)4200 void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
4201   CallRuntime(Runtime::FunctionForId(fid), num_arguments);
4202 }
4203 
4204 
CallExternalReference(const ExternalReference & ext,int num_arguments,BranchDelaySlot bd)4205 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
4206                                            int num_arguments,
4207                                            BranchDelaySlot bd) {
4208   PrepareCEntryArgs(num_arguments);
4209   PrepareCEntryFunction(ext);
4210 
4211   CEntryStub stub(1);
4212   CallStub(&stub, al, zero_reg, Operand(zero_reg), bd);
4213 }
4214 
4215 
TailCallExternalReference(const ExternalReference & ext,int num_arguments,int result_size)4216 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
4217                                                int num_arguments,
4218                                                int result_size) {
4219   // TODO(1236192): Most runtime routines don't need the number of
4220   // arguments passed in because it is constant. At some point we
4221   // should remove this need and make the runtime routine entry code
4222   // smarter.
4223   PrepareCEntryArgs(num_arguments);
4224   JumpToExternalReference(ext);
4225 }
4226 
4227 
TailCallRuntime(Runtime::FunctionId fid,int num_arguments,int result_size)4228 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
4229                                      int num_arguments,
4230                                      int result_size) {
4231   TailCallExternalReference(ExternalReference(fid, isolate()),
4232                             num_arguments,
4233                             result_size);
4234 }
4235 
4236 
JumpToExternalReference(const ExternalReference & builtin,BranchDelaySlot bd)4237 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
4238                                              BranchDelaySlot bd) {
4239   PrepareCEntryFunction(builtin);
4240   CEntryStub stub(1);
4241   Jump(stub.GetCode(),
4242        RelocInfo::CODE_TARGET,
4243        al,
4244        zero_reg,
4245        Operand(zero_reg),
4246        bd);
4247 }
4248 
4249 
InvokeBuiltin(Builtins::JavaScript id,InvokeFlag flag,const CallWrapper & call_wrapper)4250 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
4251                                    InvokeFlag flag,
4252                                    const CallWrapper& call_wrapper) {
4253   // You can't call a builtin without a valid frame.
4254   ASSERT(flag == JUMP_FUNCTION || has_frame());
4255 
4256   GetBuiltinEntry(t9, id);
4257   if (flag == CALL_FUNCTION) {
4258     call_wrapper.BeforeCall(CallSize(t9));
4259     SetCallKind(t1, CALL_AS_METHOD);
4260     Call(t9);
4261     call_wrapper.AfterCall();
4262   } else {
4263     ASSERT(flag == JUMP_FUNCTION);
4264     SetCallKind(t1, CALL_AS_METHOD);
4265     Jump(t9);
4266   }
4267 }
4268 
4269 
GetBuiltinFunction(Register target,Builtins::JavaScript id)4270 void MacroAssembler::GetBuiltinFunction(Register target,
4271                                         Builtins::JavaScript id) {
4272   // Load the builtins object into target register.
4273   lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4274   lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
4275   // Load the JavaScript builtin function from the builtins object.
4276   lw(target, FieldMemOperand(target,
4277                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
4278 }
4279 
4280 
GetBuiltinEntry(Register target,Builtins::JavaScript id)4281 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
4282   ASSERT(!target.is(a1));
4283   GetBuiltinFunction(a1, id);
4284   // Load the code entry point from the builtins object.
4285   lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
4286 }
4287 
4288 
SetCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)4289 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
4290                                 Register scratch1, Register scratch2) {
4291   if (FLAG_native_code_counters && counter->Enabled()) {
4292     li(scratch1, Operand(value));
4293     li(scratch2, Operand(ExternalReference(counter)));
4294     sw(scratch1, MemOperand(scratch2));
4295   }
4296 }
4297 
4298 
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)4299 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
4300                                       Register scratch1, Register scratch2) {
4301   ASSERT(value > 0);
4302   if (FLAG_native_code_counters && counter->Enabled()) {
4303     li(scratch2, Operand(ExternalReference(counter)));
4304     lw(scratch1, MemOperand(scratch2));
4305     Addu(scratch1, scratch1, Operand(value));
4306     sw(scratch1, MemOperand(scratch2));
4307   }
4308 }
4309 
4310 
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)4311 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
4312                                       Register scratch1, Register scratch2) {
4313   ASSERT(value > 0);
4314   if (FLAG_native_code_counters && counter->Enabled()) {
4315     li(scratch2, Operand(ExternalReference(counter)));
4316     lw(scratch1, MemOperand(scratch2));
4317     Subu(scratch1, scratch1, Operand(value));
4318     sw(scratch1, MemOperand(scratch2));
4319   }
4320 }
4321 
4322 
4323 // -----------------------------------------------------------------------------
4324 // Debugging.
4325 
Assert(Condition cc,const char * msg,Register rs,Operand rt)4326 void MacroAssembler::Assert(Condition cc, const char* msg,
4327                             Register rs, Operand rt) {
4328   if (emit_debug_code())
4329     Check(cc, msg, rs, rt);
4330 }
4331 
4332 
AssertRegisterIsRoot(Register reg,Heap::RootListIndex index)4333 void MacroAssembler::AssertRegisterIsRoot(Register reg,
4334                                           Heap::RootListIndex index) {
4335   if (emit_debug_code()) {
4336     LoadRoot(at, index);
4337     Check(eq, "Register did not match expected root", reg, Operand(at));
4338   }
4339 }
4340 
4341 
AssertFastElements(Register elements)4342 void MacroAssembler::AssertFastElements(Register elements) {
4343   if (emit_debug_code()) {
4344     ASSERT(!elements.is(at));
4345     Label ok;
4346     push(elements);
4347     lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
4348     LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4349     Branch(&ok, eq, elements, Operand(at));
4350     LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
4351     Branch(&ok, eq, elements, Operand(at));
4352     LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
4353     Branch(&ok, eq, elements, Operand(at));
4354     Abort("JSObject with fast elements map has slow elements");
4355     bind(&ok);
4356     pop(elements);
4357   }
4358 }
4359 
4360 
Check(Condition cc,const char * msg,Register rs,Operand rt)4361 void MacroAssembler::Check(Condition cc, const char* msg,
4362                            Register rs, Operand rt) {
4363   Label L;
4364   Branch(&L, cc, rs, rt);
4365   Abort(msg);
4366   // Will not return here.
4367   bind(&L);
4368 }
4369 
4370 
Abort(const char * msg)4371 void MacroAssembler::Abort(const char* msg) {
4372   Label abort_start;
4373   bind(&abort_start);
4374   // We want to pass the msg string like a smi to avoid GC
4375   // problems, however msg is not guaranteed to be aligned
4376   // properly. Instead, we pass an aligned pointer that is
4377   // a proper v8 smi, but also pass the alignment difference
4378   // from the real pointer as a smi.
4379   intptr_t p1 = reinterpret_cast<intptr_t>(msg);
4380   intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
4381   ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
4382 #ifdef DEBUG
4383   if (msg != NULL) {
4384     RecordComment("Abort message: ");
4385     RecordComment(msg);
4386   }
4387 #endif
4388 
4389   li(a0, Operand(p0));
4390   push(a0);
4391   li(a0, Operand(Smi::FromInt(p1 - p0)));
4392   push(a0);
4393   // Disable stub call restrictions to always allow calls to abort.
4394   if (!has_frame_) {
4395     // We don't actually want to generate a pile of code for this, so just
4396     // claim there is a stack frame, without generating one.
4397     FrameScope scope(this, StackFrame::NONE);
4398     CallRuntime(Runtime::kAbort, 2);
4399   } else {
4400     CallRuntime(Runtime::kAbort, 2);
4401   }
4402   // Will not return here.
4403   if (is_trampoline_pool_blocked()) {
4404     // If the calling code cares about the exact number of
4405     // instructions generated, we insert padding here to keep the size
4406     // of the Abort macro constant.
4407     // Currently in debug mode with debug_code enabled the number of
4408     // generated instructions is 14, so we use this as a maximum value.
4409     static const int kExpectedAbortInstructions = 14;
4410     int abort_instructions = InstructionsGeneratedSince(&abort_start);
4411     ASSERT(abort_instructions <= kExpectedAbortInstructions);
4412     while (abort_instructions++ < kExpectedAbortInstructions) {
4413       nop();
4414     }
4415   }
4416 }
4417 
4418 
LoadContext(Register dst,int context_chain_length)4419 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
4420   if (context_chain_length > 0) {
4421     // Move up the chain of contexts to the context containing the slot.
4422     lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4423     for (int i = 1; i < context_chain_length; i++) {
4424       lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4425     }
4426   } else {
4427     // Slot is in the current function context.  Move it into the
4428     // destination register in case we store into it (the write barrier
4429     // cannot be allowed to destroy the context in esi).
4430     Move(dst, cp);
4431   }
4432 }
4433 
4434 
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch,Label * no_map_match)4435 void MacroAssembler::LoadTransitionedArrayMapConditional(
4436     ElementsKind expected_kind,
4437     ElementsKind transitioned_kind,
4438     Register map_in_out,
4439     Register scratch,
4440     Label* no_map_match) {
4441   // Load the global or builtins object from the current context.
4442   lw(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4443   lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
4444 
4445   // Check that the function's map is the same as the expected cached map.
4446   int expected_index =
4447       Context::GetContextMapIndexFromElementsKind(expected_kind);
4448   lw(at, MemOperand(scratch, Context::SlotOffset(expected_index)));
4449   Branch(no_map_match, ne, map_in_out, Operand(at));
4450 
4451   // Use the transitioned cached map.
4452   int trans_index =
4453       Context::GetContextMapIndexFromElementsKind(transitioned_kind);
4454   lw(map_in_out, MemOperand(scratch, Context::SlotOffset(trans_index)));
4455 }
4456 
4457 
LoadInitialArrayMap(Register function_in,Register scratch,Register map_out)4458 void MacroAssembler::LoadInitialArrayMap(
4459     Register function_in, Register scratch, Register map_out) {
4460   ASSERT(!function_in.is(map_out));
4461   Label done;
4462   lw(map_out, FieldMemOperand(function_in,
4463                               JSFunction::kPrototypeOrInitialMapOffset));
4464   if (!FLAG_smi_only_arrays) {
4465     LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
4466                                         FAST_ELEMENTS,
4467                                         map_out,
4468                                         scratch,
4469                                         &done);
4470   }
4471   bind(&done);
4472 }
4473 
4474 
LoadGlobalFunction(int index,Register function)4475 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4476   // Load the global or builtins object from the current context.
4477   lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4478   // Load the global context from the global or builtins object.
4479   lw(function, FieldMemOperand(function,
4480                                GlobalObject::kGlobalContextOffset));
4481   // Load the function from the global context.
4482   lw(function, MemOperand(function, Context::SlotOffset(index)));
4483 }
4484 
4485 
LoadGlobalFunctionInitialMap(Register function,Register map,Register scratch)4486 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4487                                                   Register map,
4488                                                   Register scratch) {
4489   // Load the initial map. The global functions all have initial maps.
4490   lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4491   if (emit_debug_code()) {
4492     Label ok, fail;
4493     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4494     Branch(&ok);
4495     bind(&fail);
4496     Abort("Global functions must have initial map");
4497     bind(&ok);
4498   }
4499 }
4500 
4501 
EnterFrame(StackFrame::Type type)4502 void MacroAssembler::EnterFrame(StackFrame::Type type) {
4503   addiu(sp, sp, -5 * kPointerSize);
4504   li(t8, Operand(Smi::FromInt(type)));
4505   li(t9, Operand(CodeObject()), CONSTANT_SIZE);
4506   sw(ra, MemOperand(sp, 4 * kPointerSize));
4507   sw(fp, MemOperand(sp, 3 * kPointerSize));
4508   sw(cp, MemOperand(sp, 2 * kPointerSize));
4509   sw(t8, MemOperand(sp, 1 * kPointerSize));
4510   sw(t9, MemOperand(sp, 0 * kPointerSize));
4511   addiu(fp, sp, 3 * kPointerSize);
4512 }
4513 
4514 
LeaveFrame(StackFrame::Type type)4515 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
4516   mov(sp, fp);
4517   lw(fp, MemOperand(sp, 0 * kPointerSize));
4518   lw(ra, MemOperand(sp, 1 * kPointerSize));
4519   addiu(sp, sp, 2 * kPointerSize);
4520 }
4521 
4522 
EnterExitFrame(bool save_doubles,int stack_space)4523 void MacroAssembler::EnterExitFrame(bool save_doubles,
4524                                     int stack_space) {
4525   // Set up the frame structure on the stack.
4526   STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
4527   STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
4528   STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
4529 
4530   // This is how the stack will look:
4531   // fp + 2 (==kCallerSPDisplacement) - old stack's end
4532   // [fp + 1 (==kCallerPCOffset)] - saved old ra
4533   // [fp + 0 (==kCallerFPOffset)] - saved old fp
4534   // [fp - 1 (==kSPOffset)] - sp of the called function
4535   // [fp - 2 (==kCodeOffset)] - CodeObject
4536   // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
4537   //   new stack (will contain saved ra)
4538 
4539   // Save registers.
4540   addiu(sp, sp, -4 * kPointerSize);
4541   sw(ra, MemOperand(sp, 3 * kPointerSize));
4542   sw(fp, MemOperand(sp, 2 * kPointerSize));
4543   addiu(fp, sp, 2 * kPointerSize);  // Set up new frame pointer.
4544 
4545   if (emit_debug_code()) {
4546     sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
4547   }
4548 
4549   // Accessed from ExitFrame::code_slot.
4550   li(t8, Operand(CodeObject()), CONSTANT_SIZE);
4551   sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
4552 
4553   // Save the frame pointer and the context in top.
4554   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
4555   sw(fp, MemOperand(t8));
4556   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
4557   sw(cp, MemOperand(t8));
4558 
4559   const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
4560   if (save_doubles) {
4561     // The stack  must be allign to 0 modulo 8 for stores with sdc1.
4562     ASSERT(kDoubleSize == frame_alignment);
4563     if (frame_alignment > 0) {
4564       ASSERT(IsPowerOf2(frame_alignment));
4565       And(sp, sp, Operand(-frame_alignment));  // Align stack.
4566     }
4567     int space = FPURegister::kNumRegisters * kDoubleSize;
4568     Subu(sp, sp, Operand(space));
4569     // Remember: we only need to save every 2nd double FPU value.
4570     for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
4571       FPURegister reg = FPURegister::from_code(i);
4572       sdc1(reg, MemOperand(sp, i * kDoubleSize));
4573     }
4574   }
4575 
4576   // Reserve place for the return address, stack space and an optional slot
4577   // (used by the DirectCEntryStub to hold the return value if a struct is
4578   // returned) and align the frame preparing for calling the runtime function.
4579   ASSERT(stack_space >= 0);
4580   Subu(sp, sp, Operand((stack_space + 2) * kPointerSize));
4581   if (frame_alignment > 0) {
4582     ASSERT(IsPowerOf2(frame_alignment));
4583     And(sp, sp, Operand(-frame_alignment));  // Align stack.
4584   }
4585 
4586   // Set the exit frame sp value to point just before the return address
4587   // location.
4588   addiu(at, sp, kPointerSize);
4589   sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
4590 }
4591 
4592 
LeaveExitFrame(bool save_doubles,Register argument_count,bool do_return)4593 void MacroAssembler::LeaveExitFrame(bool save_doubles,
4594                                     Register argument_count,
4595                                     bool do_return) {
4596   // Optionally restore all double registers.
4597   if (save_doubles) {
4598     // Remember: we only need to restore every 2nd double FPU value.
4599     lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset));
4600     for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
4601       FPURegister reg = FPURegister::from_code(i);
4602       ldc1(reg, MemOperand(t8, i  * kDoubleSize + kPointerSize));
4603     }
4604   }
4605 
4606   // Clear top frame.
4607   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
4608   sw(zero_reg, MemOperand(t8));
4609 
4610   // Restore current context from top and clear it in debug mode.
4611   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
4612   lw(cp, MemOperand(t8));
4613 #ifdef DEBUG
4614   sw(a3, MemOperand(t8));
4615 #endif
4616 
4617   // Pop the arguments, restore registers, and return.
4618   mov(sp, fp);  // Respect ABI stack constraint.
4619   lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
4620   lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
4621 
4622   if (argument_count.is_valid()) {
4623     sll(t8, argument_count, kPointerSizeLog2);
4624     addu(sp, sp, t8);
4625   }
4626 
4627   if (do_return) {
4628     Ret(USE_DELAY_SLOT);
4629     // If returning, the instruction in the delay slot will be the addiu below.
4630   }
4631   addiu(sp, sp, 8);
4632 }
4633 
4634 
InitializeNewString(Register string,Register length,Heap::RootListIndex map_index,Register scratch1,Register scratch2)4635 void MacroAssembler::InitializeNewString(Register string,
4636                                          Register length,
4637                                          Heap::RootListIndex map_index,
4638                                          Register scratch1,
4639                                          Register scratch2) {
4640   sll(scratch1, length, kSmiTagSize);
4641   LoadRoot(scratch2, map_index);
4642   sw(scratch1, FieldMemOperand(string, String::kLengthOffset));
4643   li(scratch1, Operand(String::kEmptyHashField));
4644   sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
4645   sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
4646 }
4647 
4648 
ActivationFrameAlignment()4649 int MacroAssembler::ActivationFrameAlignment() {
4650 #if defined(V8_HOST_ARCH_MIPS)
4651   // Running on the real platform. Use the alignment as mandated by the local
4652   // environment.
4653   // Note: This will break if we ever start generating snapshots on one Mips
4654   // platform for another Mips platform with a different alignment.
4655   return OS::ActivationFrameAlignment();
4656 #else  // defined(V8_HOST_ARCH_MIPS)
4657   // If we are using the simulator then we should always align to the expected
4658   // alignment. As the simulator is used to generate snapshots we do not know
4659   // if the target platform will need alignment, so this is controlled from a
4660   // flag.
4661   return FLAG_sim_stack_alignment;
4662 #endif  // defined(V8_HOST_ARCH_MIPS)
4663 }
4664 
4665 
AssertStackIsAligned()4666 void MacroAssembler::AssertStackIsAligned() {
4667   if (emit_debug_code()) {
4668       const int frame_alignment = ActivationFrameAlignment();
4669       const int frame_alignment_mask = frame_alignment - 1;
4670 
4671       if (frame_alignment > kPointerSize) {
4672         Label alignment_as_expected;
4673         ASSERT(IsPowerOf2(frame_alignment));
4674         andi(at, sp, frame_alignment_mask);
4675         Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
4676         // Don't use Check here, as it will call Runtime_Abort re-entering here.
4677         stop("Unexpected stack alignment");
4678         bind(&alignment_as_expected);
4679       }
4680     }
4681 }
4682 
4683 
JumpIfNotPowerOfTwoOrZero(Register reg,Register scratch,Label * not_power_of_two_or_zero)4684 void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
4685     Register reg,
4686     Register scratch,
4687     Label* not_power_of_two_or_zero) {
4688   Subu(scratch, reg, Operand(1));
4689   Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
4690          scratch, Operand(zero_reg));
4691   and_(at, scratch, reg);  // In the delay slot.
4692   Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
4693 }
4694 
4695 
SmiTagCheckOverflow(Register reg,Register overflow)4696 void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
4697   ASSERT(!reg.is(overflow));
4698   mov(overflow, reg);  // Save original value.
4699   SmiTag(reg);
4700   xor_(overflow, overflow, reg);  // Overflow if (value ^ 2 * value) < 0.
4701 }
4702 
4703 
SmiTagCheckOverflow(Register dst,Register src,Register overflow)4704 void MacroAssembler::SmiTagCheckOverflow(Register dst,
4705                                          Register src,
4706                                          Register overflow) {
4707   if (dst.is(src)) {
4708     // Fall back to slower case.
4709     SmiTagCheckOverflow(dst, overflow);
4710   } else {
4711     ASSERT(!dst.is(src));
4712     ASSERT(!dst.is(overflow));
4713     ASSERT(!src.is(overflow));
4714     SmiTag(dst, src);
4715     xor_(overflow, dst, src);  // Overflow if (value ^ 2 * value) < 0.
4716   }
4717 }
4718 
4719 
UntagAndJumpIfSmi(Register dst,Register src,Label * smi_case)4720 void MacroAssembler::UntagAndJumpIfSmi(Register dst,
4721                                        Register src,
4722                                        Label* smi_case) {
4723   JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
4724   SmiUntag(dst, src);
4725 }
4726 
4727 
UntagAndJumpIfNotSmi(Register dst,Register src,Label * non_smi_case)4728 void MacroAssembler::UntagAndJumpIfNotSmi(Register dst,
4729                                           Register src,
4730                                           Label* non_smi_case) {
4731   JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT);
4732   SmiUntag(dst, src);
4733 }
4734 
JumpIfSmi(Register value,Label * smi_label,Register scratch,BranchDelaySlot bd)4735 void MacroAssembler::JumpIfSmi(Register value,
4736                                Label* smi_label,
4737                                Register scratch,
4738                                BranchDelaySlot bd) {
4739   ASSERT_EQ(0, kSmiTag);
4740   andi(scratch, value, kSmiTagMask);
4741   Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
4742 }
4743 
JumpIfNotSmi(Register value,Label * not_smi_label,Register scratch,BranchDelaySlot bd)4744 void MacroAssembler::JumpIfNotSmi(Register value,
4745                                   Label* not_smi_label,
4746                                   Register scratch,
4747                                   BranchDelaySlot bd) {
4748   ASSERT_EQ(0, kSmiTag);
4749   andi(scratch, value, kSmiTagMask);
4750   Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
4751 }
4752 
4753 
JumpIfNotBothSmi(Register reg1,Register reg2,Label * on_not_both_smi)4754 void MacroAssembler::JumpIfNotBothSmi(Register reg1,
4755                                       Register reg2,
4756                                       Label* on_not_both_smi) {
4757   STATIC_ASSERT(kSmiTag == 0);
4758   ASSERT_EQ(1, kSmiTagMask);
4759   or_(at, reg1, reg2);
4760   JumpIfNotSmi(at, on_not_both_smi);
4761 }
4762 
4763 
JumpIfEitherSmi(Register reg1,Register reg2,Label * on_either_smi)4764 void MacroAssembler::JumpIfEitherSmi(Register reg1,
4765                                      Register reg2,
4766                                      Label* on_either_smi) {
4767   STATIC_ASSERT(kSmiTag == 0);
4768   ASSERT_EQ(1, kSmiTagMask);
4769   // Both Smi tags must be 1 (not Smi).
4770   and_(at, reg1, reg2);
4771   JumpIfSmi(at, on_either_smi);
4772 }
4773 
4774 
AbortIfSmi(Register object)4775 void MacroAssembler::AbortIfSmi(Register object) {
4776   STATIC_ASSERT(kSmiTag == 0);
4777   andi(at, object, kSmiTagMask);
4778   Assert(ne, "Operand is a smi", at, Operand(zero_reg));
4779 }
4780 
4781 
AbortIfNotSmi(Register object)4782 void MacroAssembler::AbortIfNotSmi(Register object) {
4783   STATIC_ASSERT(kSmiTag == 0);
4784   andi(at, object, kSmiTagMask);
4785   Assert(eq, "Operand is a smi", at, Operand(zero_reg));
4786 }
4787 
4788 
AbortIfNotString(Register object)4789 void MacroAssembler::AbortIfNotString(Register object) {
4790   STATIC_ASSERT(kSmiTag == 0);
4791   And(t0, object, Operand(kSmiTagMask));
4792   Assert(ne, "Operand is not a string", t0, Operand(zero_reg));
4793   push(object);
4794   lw(object, FieldMemOperand(object, HeapObject::kMapOffset));
4795   lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
4796   Assert(lo, "Operand is not a string", object, Operand(FIRST_NONSTRING_TYPE));
4797   pop(object);
4798 }
4799 
4800 
AbortIfNotRootValue(Register src,Heap::RootListIndex root_value_index,const char * message)4801 void MacroAssembler::AbortIfNotRootValue(Register src,
4802                                          Heap::RootListIndex root_value_index,
4803                                          const char* message) {
4804   ASSERT(!src.is(at));
4805   LoadRoot(at, root_value_index);
4806   Assert(eq, message, src, Operand(at));
4807 }
4808 
4809 
JumpIfNotHeapNumber(Register object,Register heap_number_map,Register scratch,Label * on_not_heap_number)4810 void MacroAssembler::JumpIfNotHeapNumber(Register object,
4811                                          Register heap_number_map,
4812                                          Register scratch,
4813                                          Label* on_not_heap_number) {
4814   lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
4815   AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
4816   Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
4817 }
4818 
4819 
JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure)4820 void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
4821     Register first,
4822     Register second,
4823     Register scratch1,
4824     Register scratch2,
4825     Label* failure) {
4826   // Test that both first and second are sequential ASCII strings.
4827   // Assume that they are non-smis.
4828   lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
4829   lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
4830   lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
4831   lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
4832 
4833   JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
4834                                                scratch2,
4835                                                scratch1,
4836                                                scratch2,
4837                                                failure);
4838 }
4839 
4840 
JumpIfNotBothSequentialAsciiStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure)4841 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
4842                                                          Register second,
4843                                                          Register scratch1,
4844                                                          Register scratch2,
4845                                                          Label* failure) {
4846   // Check that neither is a smi.
4847   STATIC_ASSERT(kSmiTag == 0);
4848   And(scratch1, first, Operand(second));
4849   JumpIfSmi(scratch1, failure);
4850   JumpIfNonSmisNotBothSequentialAsciiStrings(first,
4851                                              second,
4852                                              scratch1,
4853                                              scratch2,
4854                                              failure);
4855 }
4856 
4857 
JumpIfBothInstanceTypesAreNotSequentialAscii(Register first,Register second,Register scratch1,Register scratch2,Label * failure)4858 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
4859     Register first,
4860     Register second,
4861     Register scratch1,
4862     Register scratch2,
4863     Label* failure) {
4864   int kFlatAsciiStringMask =
4865       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
4866   int kFlatAsciiStringTag = ASCII_STRING_TYPE;
4867   ASSERT(kFlatAsciiStringTag <= 0xffff);  // Ensure this fits 16-bit immed.
4868   andi(scratch1, first, kFlatAsciiStringMask);
4869   Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag));
4870   andi(scratch2, second, kFlatAsciiStringMask);
4871   Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag));
4872 }
4873 
4874 
JumpIfInstanceTypeIsNotSequentialAscii(Register type,Register scratch,Label * failure)4875 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
4876                                                             Register scratch,
4877                                                             Label* failure) {
4878   int kFlatAsciiStringMask =
4879       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
4880   int kFlatAsciiStringTag = ASCII_STRING_TYPE;
4881   And(scratch, type, Operand(kFlatAsciiStringMask));
4882   Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag));
4883 }
4884 
4885 
4886 static const int kRegisterPassedArguments = 4;
4887 
CalculateStackPassedWords(int num_reg_arguments,int num_double_arguments)4888 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
4889                                               int num_double_arguments) {
4890   int stack_passed_words = 0;
4891   num_reg_arguments += 2 * num_double_arguments;
4892 
4893   // Up to four simple arguments are passed in registers a0..a3.
4894   if (num_reg_arguments > kRegisterPassedArguments) {
4895     stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
4896   }
4897   stack_passed_words += kCArgSlotCount;
4898   return stack_passed_words;
4899 }
4900 
4901 
PrepareCallCFunction(int num_reg_arguments,int num_double_arguments,Register scratch)4902 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
4903                                           int num_double_arguments,
4904                                           Register scratch) {
4905   int frame_alignment = ActivationFrameAlignment();
4906 
4907   // Up to four simple arguments are passed in registers a0..a3.
4908   // Those four arguments must have reserved argument slots on the stack for
4909   // mips, even though those argument slots are not normally used.
4910   // Remaining arguments are pushed on the stack, above (higher address than)
4911   // the argument slots.
4912   int stack_passed_arguments = CalculateStackPassedWords(
4913       num_reg_arguments, num_double_arguments);
4914   if (frame_alignment > kPointerSize) {
4915     // Make stack end at alignment and make room for num_arguments - 4 words
4916     // and the original value of sp.
4917     mov(scratch, sp);
4918     Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
4919     ASSERT(IsPowerOf2(frame_alignment));
4920     And(sp, sp, Operand(-frame_alignment));
4921     sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
4922   } else {
4923     Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
4924   }
4925 }
4926 
4927 
PrepareCallCFunction(int num_reg_arguments,Register scratch)4928 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
4929                                           Register scratch) {
4930   PrepareCallCFunction(num_reg_arguments, 0, scratch);
4931 }
4932 
4933 
CallCFunction(ExternalReference function,int num_reg_arguments,int num_double_arguments)4934 void MacroAssembler::CallCFunction(ExternalReference function,
4935                                    int num_reg_arguments,
4936                                    int num_double_arguments) {
4937   li(t8, Operand(function));
4938   CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
4939 }
4940 
4941 
CallCFunction(Register function,int num_reg_arguments,int num_double_arguments)4942 void MacroAssembler::CallCFunction(Register function,
4943                                    int num_reg_arguments,
4944                                    int num_double_arguments) {
4945   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
4946 }
4947 
4948 
CallCFunction(ExternalReference function,int num_arguments)4949 void MacroAssembler::CallCFunction(ExternalReference function,
4950                                    int num_arguments) {
4951   CallCFunction(function, num_arguments, 0);
4952 }
4953 
4954 
CallCFunction(Register function,int num_arguments)4955 void MacroAssembler::CallCFunction(Register function,
4956                                    int num_arguments) {
4957   CallCFunction(function, num_arguments, 0);
4958 }
4959 
4960 
CallCFunctionHelper(Register function,int num_reg_arguments,int num_double_arguments)4961 void MacroAssembler::CallCFunctionHelper(Register function,
4962                                          int num_reg_arguments,
4963                                          int num_double_arguments) {
4964   ASSERT(has_frame());
4965   // Make sure that the stack is aligned before calling a C function unless
4966   // running in the simulator. The simulator has its own alignment check which
4967   // provides more information.
4968   // The argument stots are presumed to have been set up by
4969   // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
4970 
4971 #if defined(V8_HOST_ARCH_MIPS)
4972   if (emit_debug_code()) {
4973     int frame_alignment = OS::ActivationFrameAlignment();
4974     int frame_alignment_mask = frame_alignment - 1;
4975     if (frame_alignment > kPointerSize) {
4976       ASSERT(IsPowerOf2(frame_alignment));
4977       Label alignment_as_expected;
4978       And(at, sp, Operand(frame_alignment_mask));
4979       Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
4980       // Don't use Check here, as it will call Runtime_Abort possibly
4981       // re-entering here.
4982       stop("Unexpected alignment in CallCFunction");
4983       bind(&alignment_as_expected);
4984     }
4985   }
4986 #endif  // V8_HOST_ARCH_MIPS
4987 
4988   // Just call directly. The function called cannot cause a GC, or
4989   // allow preemption, so the return address in the link register
4990   // stays correct.
4991 
4992   if (!function.is(t9)) {
4993     mov(t9, function);
4994     function = t9;
4995   }
4996 
4997   Call(function);
4998 
4999   int stack_passed_arguments = CalculateStackPassedWords(
5000       num_reg_arguments, num_double_arguments);
5001 
5002   if (OS::ActivationFrameAlignment() > kPointerSize) {
5003     lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
5004   } else {
5005     Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
5006   }
5007 }
5008 
5009 
5010 #undef BRANCH_ARGS_CHECK
5011 
5012 
PatchRelocatedValue(Register li_location,Register scratch,Register new_value)5013 void MacroAssembler::PatchRelocatedValue(Register li_location,
5014                                          Register scratch,
5015                                          Register new_value) {
5016   lw(scratch, MemOperand(li_location));
5017   // At this point scratch is a lui(at, ...) instruction.
5018   if (emit_debug_code()) {
5019     And(scratch, scratch, kOpcodeMask);
5020     Check(eq, "The instruction to patch should be a lui.",
5021         scratch, Operand(LUI));
5022     lw(scratch, MemOperand(li_location));
5023   }
5024   srl(t9, new_value, kImm16Bits);
5025   Ins(scratch, t9, 0, kImm16Bits);
5026   sw(scratch, MemOperand(li_location));
5027 
5028   lw(scratch, MemOperand(li_location, kInstrSize));
5029   // scratch is now ori(at, ...).
5030   if (emit_debug_code()) {
5031     And(scratch, scratch, kOpcodeMask);
5032     Check(eq, "The instruction to patch should be an ori.",
5033         scratch, Operand(ORI));
5034     lw(scratch, MemOperand(li_location, kInstrSize));
5035   }
5036   Ins(scratch, new_value, 0, kImm16Bits);
5037   sw(scratch, MemOperand(li_location, kInstrSize));
5038 
5039   // Update the I-cache so the new lui and ori can be executed.
5040   FlushICache(li_location, 2);
5041 }
5042 
GetRelocatedValue(Register li_location,Register value,Register scratch)5043 void MacroAssembler::GetRelocatedValue(Register li_location,
5044                                        Register value,
5045                                        Register scratch) {
5046   lw(value, MemOperand(li_location));
5047   if (emit_debug_code()) {
5048     And(value, value, kOpcodeMask);
5049     Check(eq, "The instruction should be a lui.",
5050         value, Operand(LUI));
5051     lw(value, MemOperand(li_location));
5052   }
5053 
5054   // value now holds a lui instruction. Extract the immediate.
5055   sll(value, value, kImm16Bits);
5056 
5057   lw(scratch, MemOperand(li_location, kInstrSize));
5058   if (emit_debug_code()) {
5059     And(scratch, scratch, kOpcodeMask);
5060     Check(eq, "The instruction should be an ori.",
5061         scratch, Operand(ORI));
5062     lw(scratch, MemOperand(li_location, kInstrSize));
5063   }
5064   // "scratch" now holds an ori instruction. Extract the immediate.
5065   andi(scratch, scratch, kImm16Mask);
5066 
5067   // Merge the results.
5068   or_(value, value, scratch);
5069 }
5070 
5071 
CheckPageFlag(Register object,Register scratch,int mask,Condition cc,Label * condition_met)5072 void MacroAssembler::CheckPageFlag(
5073     Register object,
5074     Register scratch,
5075     int mask,
5076     Condition cc,
5077     Label* condition_met) {
5078   And(scratch, object, Operand(~Page::kPageAlignmentMask));
5079   lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
5080   And(scratch, scratch, Operand(mask));
5081   Branch(condition_met, cc, scratch, Operand(zero_reg));
5082 }
5083 
5084 
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black)5085 void MacroAssembler::JumpIfBlack(Register object,
5086                                  Register scratch0,
5087                                  Register scratch1,
5088                                  Label* on_black) {
5089   HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
5090   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
5091 }
5092 
5093 
HasColor(Register object,Register bitmap_scratch,Register mask_scratch,Label * has_color,int first_bit,int second_bit)5094 void MacroAssembler::HasColor(Register object,
5095                               Register bitmap_scratch,
5096                               Register mask_scratch,
5097                               Label* has_color,
5098                               int first_bit,
5099                               int second_bit) {
5100   ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
5101   ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
5102 
5103   GetMarkBits(object, bitmap_scratch, mask_scratch);
5104 
5105   Label other_color, word_boundary;
5106   lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
5107   And(t8, t9, Operand(mask_scratch));
5108   Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
5109   // Shift left 1 by adding.
5110   Addu(mask_scratch, mask_scratch, Operand(mask_scratch));
5111   Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg));
5112   And(t8, t9, Operand(mask_scratch));
5113   Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
5114   jmp(&other_color);
5115 
5116   bind(&word_boundary);
5117   lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
5118   And(t9, t9, Operand(1));
5119   Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg));
5120   bind(&other_color);
5121 }
5122 
5123 
5124 // Detect some, but not all, common pointer-free objects.  This is used by the
5125 // incremental write barrier which doesn't care about oddballs (they are always
5126 // marked black immediately so this code is not hit).
JumpIfDataObject(Register value,Register scratch,Label * not_data_object)5127 void MacroAssembler::JumpIfDataObject(Register value,
5128                                       Register scratch,
5129                                       Label* not_data_object) {
5130   ASSERT(!AreAliased(value, scratch, t8, no_reg));
5131   Label is_data_object;
5132   lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5133   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
5134   Branch(&is_data_object, eq, t8, Operand(scratch));
5135   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
5136   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
5137   // If it's a string and it's not a cons string then it's an object containing
5138   // no GC pointers.
5139   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
5140   And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
5141   Branch(not_data_object, ne, t8, Operand(zero_reg));
5142   bind(&is_data_object);
5143 }
5144 
5145 
GetMarkBits(Register addr_reg,Register bitmap_reg,Register mask_reg)5146 void MacroAssembler::GetMarkBits(Register addr_reg,
5147                                  Register bitmap_reg,
5148                                  Register mask_reg) {
5149   ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
5150   And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
5151   Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
5152   const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
5153   Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
5154   sll(t8, t8, kPointerSizeLog2);
5155   Addu(bitmap_reg, bitmap_reg, t8);
5156   li(t8, Operand(1));
5157   sllv(mask_reg, t8, mask_reg);
5158 }
5159 
5160 
EnsureNotWhite(Register value,Register bitmap_scratch,Register mask_scratch,Register load_scratch,Label * value_is_white_and_not_data)5161 void MacroAssembler::EnsureNotWhite(
5162     Register value,
5163     Register bitmap_scratch,
5164     Register mask_scratch,
5165     Register load_scratch,
5166     Label* value_is_white_and_not_data) {
5167   ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
5168   GetMarkBits(value, bitmap_scratch, mask_scratch);
5169 
5170   // If the value is black or grey we don't need to do anything.
5171   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
5172   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
5173   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
5174   ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
5175 
5176   Label done;
5177 
5178   // Since both black and grey have a 1 in the first position and white does
5179   // not have a 1 there we only need to check one bit.
5180   lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
5181   And(t8, mask_scratch, load_scratch);
5182   Branch(&done, ne, t8, Operand(zero_reg));
5183 
5184   if (emit_debug_code()) {
5185     // Check for impossible bit pattern.
5186     Label ok;
5187     // sll may overflow, making the check conservative.
5188     sll(t8, mask_scratch, 1);
5189     And(t8, load_scratch, t8);
5190     Branch(&ok, eq, t8, Operand(zero_reg));
5191     stop("Impossible marking bit pattern");
5192     bind(&ok);
5193   }
5194 
5195   // Value is white.  We check whether it is data that doesn't need scanning.
5196   // Currently only checks for HeapNumber and non-cons strings.
5197   Register map = load_scratch;  // Holds map while checking type.
5198   Register length = load_scratch;  // Holds length of object after testing type.
5199   Label is_data_object;
5200 
5201   // Check for heap-number
5202   lw(map, FieldMemOperand(value, HeapObject::kMapOffset));
5203   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
5204   {
5205     Label skip;
5206     Branch(&skip, ne, t8, Operand(map));
5207     li(length, HeapNumber::kSize);
5208     Branch(&is_data_object);
5209     bind(&skip);
5210   }
5211 
5212   // Check for strings.
5213   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
5214   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
5215   // If it's a string and it's not a cons string then it's an object containing
5216   // no GC pointers.
5217   Register instance_type = load_scratch;
5218   lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
5219   And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
5220   Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
5221   // It's a non-indirect (non-cons and non-slice) string.
5222   // If it's external, the length is just ExternalString::kSize.
5223   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
5224   // External strings are the only ones with the kExternalStringTag bit
5225   // set.
5226   ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
5227   ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
5228   And(t8, instance_type, Operand(kExternalStringTag));
5229   {
5230     Label skip;
5231     Branch(&skip, eq, t8, Operand(zero_reg));
5232     li(length, ExternalString::kSize);
5233     Branch(&is_data_object);
5234     bind(&skip);
5235   }
5236 
5237   // Sequential string, either ASCII or UC16.
5238   // For ASCII (char-size of 1) we shift the smi tag away to get the length.
5239   // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
5240   // getting the length multiplied by 2.
5241   ASSERT(kAsciiStringTag == 4 && kStringEncodingMask == 4);
5242   ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
5243   lw(t9, FieldMemOperand(value, String::kLengthOffset));
5244   And(t8, instance_type, Operand(kStringEncodingMask));
5245   {
5246     Label skip;
5247     Branch(&skip, eq, t8, Operand(zero_reg));
5248     srl(t9, t9, 1);
5249     bind(&skip);
5250   }
5251   Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
5252   And(length, length, Operand(~kObjectAlignmentMask));
5253 
5254   bind(&is_data_object);
5255   // Value is a data object, and it is white.  Mark it black.  Since we know
5256   // that the object is white we can make it black by flipping one bit.
5257   lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
5258   Or(t8, t8, Operand(mask_scratch));
5259   sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
5260 
5261   And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
5262   lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
5263   Addu(t8, t8, Operand(length));
5264   sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
5265 
5266   bind(&done);
5267 }
5268 
5269 
LoadInstanceDescriptors(Register map,Register descriptors)5270 void MacroAssembler::LoadInstanceDescriptors(Register map,
5271                                              Register descriptors) {
5272   lw(descriptors,
5273      FieldMemOperand(map, Map::kInstanceDescriptorsOrBitField3Offset));
5274   Label not_smi;
5275   JumpIfNotSmi(descriptors, &not_smi);
5276   LoadRoot(descriptors, Heap::kEmptyDescriptorArrayRootIndex);
5277   bind(&not_smi);
5278 }
5279 
5280 
CheckEnumCache(Register null_value,Label * call_runtime)5281 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
5282   Label next;
5283   // Preload a couple of values used in the loop.
5284   Register  empty_fixed_array_value = t2;
5285   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
5286   Register empty_descriptor_array_value = t3;
5287   LoadRoot(empty_descriptor_array_value,
5288            Heap::kEmptyDescriptorArrayRootIndex);
5289   mov(a1, a0);
5290   bind(&next);
5291 
5292   // Check that there are no elements.  Register a1 contains the
5293   // current JS object we've reached through the prototype chain.
5294   lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset));
5295   Branch(call_runtime, ne, a2, Operand(empty_fixed_array_value));
5296 
5297   // Check that instance descriptors are not empty so that we can
5298   // check for an enum cache.  Leave the map in a2 for the subsequent
5299   // prototype load.
5300   lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
5301   lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOrBitField3Offset));
5302   JumpIfSmi(a3, call_runtime);
5303 
5304   // Check that there is an enum cache in the non-empty instance
5305   // descriptors (a3).  This is the case if the next enumeration
5306   // index field does not contain a smi.
5307   lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset));
5308   JumpIfSmi(a3, call_runtime);
5309 
5310   // For all objects but the receiver, check that the cache is empty.
5311   Label check_prototype;
5312   Branch(&check_prototype, eq, a1, Operand(a0));
5313   lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset));
5314   Branch(call_runtime, ne, a3, Operand(empty_fixed_array_value));
5315 
5316   // Load the prototype from the map and loop if non-null.
5317   bind(&check_prototype);
5318   lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset));
5319   Branch(&next, ne, a1, Operand(null_value));
5320 }
5321 
5322 
ClampUint8(Register output_reg,Register input_reg)5323 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
5324   ASSERT(!output_reg.is(input_reg));
5325   Label done;
5326   li(output_reg, Operand(255));
5327   // Normal branch: nop in delay slot.
5328   Branch(&done, gt, input_reg, Operand(output_reg));
5329   // Use delay slot in this branch.
5330   Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
5331   mov(output_reg, zero_reg);  // In delay slot.
5332   mov(output_reg, input_reg);  // Value is in range 0..255.
5333   bind(&done);
5334 }
5335 
5336 
ClampDoubleToUint8(Register result_reg,DoubleRegister input_reg,DoubleRegister temp_double_reg)5337 void MacroAssembler::ClampDoubleToUint8(Register result_reg,
5338                                         DoubleRegister input_reg,
5339                                         DoubleRegister temp_double_reg) {
5340   Label above_zero;
5341   Label done;
5342   Label in_bounds;
5343 
5344   Move(temp_double_reg, 0.0);
5345   BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
5346 
5347   // Double value is less than zero, NaN or Inf, return 0.
5348   mov(result_reg, zero_reg);
5349   Branch(&done);
5350 
5351   // Double value is >= 255, return 255.
5352   bind(&above_zero);
5353   Move(temp_double_reg, 255.0);
5354   BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
5355   li(result_reg, Operand(255));
5356   Branch(&done);
5357 
5358   // In 0-255 range, round and truncate.
5359   bind(&in_bounds);
5360   round_w_d(temp_double_reg, input_reg);
5361   mfc1(result_reg, temp_double_reg);
5362   bind(&done);
5363 }
5364 
5365 
AreAliased(Register r1,Register r2,Register r3,Register r4)5366 bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
5367   if (r1.is(r2)) return true;
5368   if (r1.is(r3)) return true;
5369   if (r1.is(r4)) return true;
5370   if (r2.is(r3)) return true;
5371   if (r2.is(r4)) return true;
5372   if (r3.is(r4)) return true;
5373   return false;
5374 }
5375 
5376 
CodePatcher(byte * address,int instructions)5377 CodePatcher::CodePatcher(byte* address, int instructions)
5378     : address_(address),
5379       instructions_(instructions),
5380       size_(instructions * Assembler::kInstrSize),
5381       masm_(Isolate::Current(), address, size_ + Assembler::kGap) {
5382   // Create a new macro assembler pointing to the address of the code to patch.
5383   // The size is adjusted with kGap on order for the assembler to generate size
5384   // bytes of instructions without failing with buffer size constraints.
5385   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
5386 }
5387 
5388 
~CodePatcher()5389 CodePatcher::~CodePatcher() {
5390   // Indicate that code has changed.
5391   CPU::FlushICache(address_, size_);
5392 
5393   // Check that the code was patched as expected.
5394   ASSERT(masm_.pc_ == address_ + size_);
5395   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
5396 }
5397 
5398 
Emit(Instr instr)5399 void CodePatcher::Emit(Instr instr) {
5400   masm()->emit(instr);
5401 }
5402 
5403 
Emit(Address addr)5404 void CodePatcher::Emit(Address addr) {
5405   masm()->emit(reinterpret_cast<Instr>(addr));
5406 }
5407 
5408 
ChangeBranchCondition(Condition cond)5409 void CodePatcher::ChangeBranchCondition(Condition cond) {
5410   Instr instr = Assembler::instr_at(masm_.pc_);
5411   ASSERT(Assembler::IsBranch(instr));
5412   uint32_t opcode = Assembler::GetOpcodeField(instr);
5413   // Currently only the 'eq' and 'ne' cond values are supported and the simple
5414   // branch instructions (with opcode being the branch type).
5415   // There are some special cases (see Assembler::IsBranch()) so extending this
5416   // would be tricky.
5417   ASSERT(opcode == BEQ ||
5418          opcode == BNE ||
5419         opcode == BLEZ ||
5420         opcode == BGTZ ||
5421         opcode == BEQL ||
5422         opcode == BNEL ||
5423        opcode == BLEZL ||
5424        opcode == BGTZL);
5425   opcode = (cond == eq) ? BEQ : BNE;
5426   instr = (instr & ~kOpcodeMask) | opcode;
5427   masm_.emit(instr);
5428 }
5429 
5430 
5431 } }  // namespace v8::internal
5432 
5433 #endif  // V8_TARGET_ARCH_MIPS
5434