/external/smali/util/src/test/java/org/jf/util/ |
D | PathUtilTest.java | 39 File[] roots = File.listRoots(); in pathUtilTest1() local 41 if (roots.length > 1) { in pathUtilTest1() 42 …File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "te… in pathUtilTest1() 43 …File relativePath = new File(roots[1] + "some" + File.separatorChar + "dir" + File.separatorChar +… in pathUtilTest1() 53 File[] roots = File.listRoots(); in pathUtilTest2() local 55 …File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "te… in pathUtilTest2() 56 …File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar +… in pathUtilTest2() 68 File[] roots = File.listRoots(); in pathUtilTest3() local 70 … File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar); in pathUtilTest3() 71 … File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar); in pathUtilTest3() [all …]
|
/external/skia/experimental/Intersection/ |
D | QuarticRoot_Test.cpp | 32 double roots[2]; in quadraticTest() local 33 const int rootCount = limit ? quadraticRootsValidT(A, b, c, roots) in quadraticTest() 34 : quadraticRootsReal(A, b, c, roots); in quadraticTest() 46 SkASSERT(approximately_equal(roots[0], -B) in quadraticTest() 47 || approximately_equal(roots[0], -C)); in quadraticTest() 49 SkASSERT(!approximately_equal(roots[0], roots[1])); in quadraticTest() 50 SkASSERT(approximately_equal(roots[1], -B) in quadraticTest() 51 || approximately_equal(roots[1], -C)); in quadraticTest() 71 double roots[3]; in testOneCubic() local 72 const int rootCount = limit ? cubicRootsValidT(A, b, c, d, roots) in testOneCubic() [all …]
|
D | QuarticRoot.cpp | 5 * Utility functions to find cubic and quartic roots, 10 * The functions return the number of non-complex roots and 24 * correct but multiple roots might be reported more 34 const double t0, const bool oneHint, double roots[4]) { in reducedQuarticRoots() 85 return quadraticRootsReal(t2, t1, t0, roots); in reducedQuarticRoots() 88 return cubicRootsReal(t3, t2, t1, t0, roots); in reducedQuarticRoots() 95 int num = cubicRootsReal(t4, t3, t2, t1, roots); in reducedQuarticRoots() 97 if (approximately_zero(roots[i])) { in reducedQuarticRoots() 101 roots[num++] = 0; in reducedQuarticRoots() 106 int num = cubicRootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); // note that -C==A+B+D+E in reducedQuarticRoots() [all …]
|
D | Extrema.cpp | 32 static int findUnitQuadRoots(double A, double B, double C, double roots[2]) in findUnitQuadRoots() 35 return validUnitDivide(-C, B, roots); in findUnitQuadRoots() 37 double* r = roots; in findUnitQuadRoots() 40 if (R < 0) { // complex roots in findUnitQuadRoots() 48 if (r - roots == 2 && AlmostEqualUlps(roots[0], roots[1])) { // nearly-equal? in findUnitQuadRoots() 51 return (int)(r - roots); in findUnitQuadRoots()
|
D | CubicUtilities.cpp | 102 // cubic roots 125 double* roots = t; in cubicRootsValidT() 128 if (R2MinusQ3 < 0) // we have 3 real roots in cubicRootsValidT() 135 *roots++ = r; in cubicRootsValidT() 139 *roots++ = r; in cubicRootsValidT() 143 *roots++ = r; in cubicRootsValidT() 157 *roots++ = r; in cubicRootsValidT() 159 return (int)(roots - t); in cubicRootsValidT() 224 double* roots = s; in cubicRootsReal() local 228 *roots++ = -adiv3; in cubicRootsReal() [all …]
|
D | LineQuadraticIntersection.cpp | 100 int intersectRay(double roots[2]) { in intersectRay() 102 solve by rotating line+quad so line is horizontal, then finding the roots in intersectRay() 127 return quadraticRootsValidT(A, 2 * B, C, roots); in intersectRay() 133 int roots = intersectRay(rootVals); in intersect() local 134 for (int index = 0; index < roots; ++index) { in intersect() 146 int horizontalIntersect(double axisIntercept, double roots[2]) { in horizontalIntersect() 153 return quadraticRootsValidT(D, 2 * E, F, roots); in horizontalIntersect() 159 int roots = horizontalIntersect(axisIntercept, rootVals); in horizontalIntersect() local 160 for (int index = 0; index < roots; ++index) { in horizontalIntersect() 175 int verticalIntersect(double axisIntercept, double roots[2]) { in verticalIntersect() [all …]
|
/external/chromium_org/third_party/skia/experimental/Intersection/ |
D | QuarticRoot_Test.cpp | 32 double roots[2]; in quadraticTest() local 33 const int rootCount = limit ? quadraticRootsValidT(A, b, c, roots) in quadraticTest() 34 : quadraticRootsReal(A, b, c, roots); in quadraticTest() 46 SkASSERT(approximately_equal(roots[0], -B) in quadraticTest() 47 || approximately_equal(roots[0], -C)); in quadraticTest() 49 SkASSERT(!approximately_equal(roots[0], roots[1])); in quadraticTest() 50 SkASSERT(approximately_equal(roots[1], -B) in quadraticTest() 51 || approximately_equal(roots[1], -C)); in quadraticTest() 71 double roots[3]; in testOneCubic() local 72 const int rootCount = limit ? cubicRootsValidT(A, b, c, d, roots) in testOneCubic() [all …]
|
D | QuarticRoot.cpp | 5 * Utility functions to find cubic and quartic roots, 10 * The functions return the number of non-complex roots and 24 * correct but multiple roots might be reported more 34 const double t0, const bool oneHint, double roots[4]) { in reducedQuarticRoots() 85 return quadraticRootsReal(t2, t1, t0, roots); in reducedQuarticRoots() 88 return cubicRootsReal(t3, t2, t1, t0, roots); in reducedQuarticRoots() 95 int num = cubicRootsReal(t4, t3, t2, t1, roots); in reducedQuarticRoots() 97 if (approximately_zero(roots[i])) { in reducedQuarticRoots() 101 roots[num++] = 0; in reducedQuarticRoots() 106 int num = cubicRootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); // note that -C==A+B+D+E in reducedQuarticRoots() [all …]
|
D | Extrema.cpp | 32 static int findUnitQuadRoots(double A, double B, double C, double roots[2]) in findUnitQuadRoots() 35 return validUnitDivide(-C, B, roots); in findUnitQuadRoots() 37 double* r = roots; in findUnitQuadRoots() 40 if (R < 0) { // complex roots in findUnitQuadRoots() 48 if (r - roots == 2 && AlmostEqualUlps(roots[0], roots[1])) { // nearly-equal? in findUnitQuadRoots() 51 return (int)(r - roots); in findUnitQuadRoots()
|
D | CubicUtilities.cpp | 102 // cubic roots 125 double* roots = t; in cubicRootsValidT() 128 if (R2MinusQ3 < 0) // we have 3 real roots in cubicRootsValidT() 135 *roots++ = r; in cubicRootsValidT() 139 *roots++ = r; in cubicRootsValidT() 143 *roots++ = r; in cubicRootsValidT() 157 *roots++ = r; in cubicRootsValidT() 159 return (int)(roots - t); in cubicRootsValidT() 224 double* roots = s; in cubicRootsReal() local 228 *roots++ = -adiv3; in cubicRootsReal() [all …]
|
D | LineQuadraticIntersection.cpp | 100 int intersectRay(double roots[2]) { in intersectRay() 102 solve by rotating line+quad so line is horizontal, then finding the roots in intersectRay() 127 return quadraticRootsValidT(A, 2 * B, C, roots); in intersectRay() 133 int roots = intersectRay(rootVals); in intersect() local 134 for (int index = 0; index < roots; ++index) { in intersect() 146 int horizontalIntersect(double axisIntercept, double roots[2]) { in horizontalIntersect() 153 return quadraticRootsValidT(D, 2 * E, F, roots); in horizontalIntersect() 159 int roots = horizontalIntersect(axisIntercept, rootVals); in horizontalIntersect() local 160 for (int index = 0; index < roots; ++index) { in horizontalIntersect() 175 int verticalIntersect(double axisIntercept, double roots[2]) { in verticalIntersect() [all …]
|
/external/eigen/unsupported/doc/examples/ |
D | PolynomialSolver1.cpp | 12 Vector5d roots = Vector5d::Random(); in main() local 13 cout << "Roots: " << roots.transpose() << endl; in main() 15 roots_to_monicPolynomial( roots, polynomial ); in main() 18 cout << "Complex roots: " << psolve.roots().transpose() << endl; in main() 23 cout << "Real roots: " << mapRR.transpose() << endl; in main() 33 cout << "Complex roots: " << psolvef.roots().transpose() << endl; in main() 35 …for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] … in main() 36 …cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl <… in main() 41 cout << "Complex roots: " << psolve6d.roots().transpose() << endl; in main() 44 std::complex<float> castedRoot( psolve6d.roots()[i].real(), psolve6d.roots()[i].imag() ); in main() [all …]
|
D | PolynomialUtils1.cpp | 9 Vector4d roots = Vector4d::Random(); in main() local 10 cout << "Roots: " << roots.transpose() << endl; in main() 12 roots_to_monicPolynomial( roots, polynomial ); in main() 18 evaluation[i] = poly_eval( polynomial, roots[i] ); } in main() 19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose(); in main()
|
/external/eigen/bench/ |
D | eig33.cpp | 48 template<typename Matrix, typename Roots> 49 inline void computeRoots(const Matrix& m, Roots& roots) in computeRoots() argument 56 // eigenvalues are the roots to this equation, all guaranteed to be in computeRoots() 62 // Construct the parameters used in classifying the roots of the equation in computeRoots() 63 // and in solving the equation for the roots in closed form. in computeRoots() 75 // Compute the eigenvalues by solving for the roots of the polynomial. in computeRoots() 80 roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta; in computeRoots() 81 roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); in computeRoots() 82 roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); in computeRoots() 85 if (roots(0) >= roots(1)) in computeRoots() [all …]
|
/external/eigen/unsupported/test/ |
D | polynomialsolver.cpp | 42 const RootsType& roots( psolve.roots() ); in aux_evalSolver() local 44 for( int i=0; i<roots.size(); ++i ){ in aux_evalSolver() 45 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } in aux_evalSolver() 52 cerr << "Roots found: " << roots.transpose() << endl; in aux_evalSolver() 53 cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; in aux_evalSolver() 57 std::vector<Scalar> rootModuli( roots.size() ); in aux_evalSolver() 58 Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); in aux_evalSolver() 59 aux = roots.array().abs(); in aux_evalSolver() 92 template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS > 93 void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_ro… in evalSolverSugarFunction() argument [all …]
|
D | polynomialutils.cpp | 36 EvalRootsType roots = EvalRootsType::Random(deg); in realRoots_to_monicPolynomial_test() local 37 roots_to_monicPolynomial( roots, pols ); in realRoots_to_monicPolynomial_test() 40 for( int i=0; i<roots.size(); ++i ){ in realRoots_to_monicPolynomial_test() 41 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } in realRoots_to_monicPolynomial_test() 74 EvalRootsType roots = EvalRootsType::Random(deg); in CauchyBounds() local 75 roots_to_monicPolynomial( roots, pols ); in CauchyBounds() 78 _Scalar Max = roots.array().abs().maxCoeff(); in CauchyBounds() 79 _Scalar min = roots.array().abs().minCoeff(); in CauchyBounds() 83 cerr << "Roots: " << roots << endl; in CauchyBounds()
|
/external/skia/src/pathops/ |
D | SkPathOpsRect.cpp | 21 int roots = 0; in setBounds() local 23 roots = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, tValues); in setBounds() 26 roots += SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValues[roots]); in setBounds() 28 for (int x = 0; x < roots; ++x) { in setBounds() 48 int roots = 0; in setBounds() local 50 roots = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, tValues); in setBounds() 53 roots += SkDCubic::FindExtrema(c[0].fY, c[1].fY, c[2].fY, c[3].fY, &tValues[roots]); in setBounds() 55 for (int x = 0; x < roots; ++x) { in setBounds()
|
D | SkQuarticRoot.cpp | 5 * Utility functions to find cubic and quartic roots, 10 * The functions return the number of non-complex roots and 24 * correct but multiple roots might be reported more 33 const double t0, const bool oneHint, double roots[4]) { in SkReducedQuarticRoots() 54 return SkDQuad::RootsReal(t2, t1, t0, roots); in SkReducedQuarticRoots() 57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots); in SkReducedQuarticRoots() 64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); in SkReducedQuarticRoots() 66 if (approximately_zero(roots[i])) { in SkReducedQuarticRoots() 70 roots[num++] = 0; in SkReducedQuarticRoots() 78 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); in SkReducedQuarticRoots() [all …]
|
/external/chromium_org/third_party/skia/src/pathops/ |
D | SkPathOpsRect.cpp | 21 int roots = 0; in setBounds() local 23 roots = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, tValues); in setBounds() 26 roots += SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValues[roots]); in setBounds() 28 for (int x = 0; x < roots; ++x) { in setBounds() 48 int roots = 0; in setBounds() local 50 roots = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, tValues); in setBounds() 53 roots += SkDCubic::FindExtrema(c[0].fY, c[1].fY, c[2].fY, c[3].fY, &tValues[roots]); in setBounds() 55 for (int x = 0; x < roots; ++x) { in setBounds()
|
D | SkQuarticRoot.cpp | 5 * Utility functions to find cubic and quartic roots, 10 * The functions return the number of non-complex roots and 24 * correct but multiple roots might be reported more 33 const double t0, const bool oneHint, double roots[4]) { in SkReducedQuarticRoots() 54 return SkDQuad::RootsReal(t2, t1, t0, roots); in SkReducedQuarticRoots() 57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots); in SkReducedQuarticRoots() 64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); in SkReducedQuarticRoots() 66 if (approximately_zero(roots[i])) { in SkReducedQuarticRoots() 70 roots[num++] = 0; in SkReducedQuarticRoots() 78 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); in SkReducedQuarticRoots() [all …]
|
D | SkDCubicLineIntersection.cpp | 97 int intersectRay(double roots[3]) { in intersectRay() 106 int count = SkDCubic::RootsValidT(A, B, C, D, roots); in intersectRay() 108 SkDPoint calcPt = c.ptAtT(roots[index]); in intersectRay() 116 count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); in intersectRay() 129 int roots = intersectRay(rootVals); in intersect() local 130 for (int index = 0; index < roots; ++index) { in intersect() 163 static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { in HorizontalIntersect() 167 int count = SkDCubic::RootsValidT(A, B, C, D, roots); in HorizontalIntersect() 169 SkDPoint calcPt = c.ptAtT(roots[index]); in HorizontalIntersect() 173 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); in HorizontalIntersect() [all …]
|
/external/ceres-solver/internal/ceres/ |
D | polynomial_test.cc | 78 // Needed because the roots are not returned in sorted order. 85 // Run a test with the polynomial defined by the N real roots in roots_real. 141 const double roots[1] = { 42.42 }; in TEST() local 142 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() 146 const double roots[1] = { -42.42 }; in TEST() local 147 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() 151 const double roots[2] = { 1.0, 42.42 }; in TEST() local 152 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() 156 const double roots[2] = { -42.42, 1.0 }; in TEST() local 157 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); in TEST() [all …]
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
D | PolynomialSolver.h | 20 * - real roots, 21 * - greatest, smallest complex roots, 22 * - real roots with greatest, smallest absolute real value, 23 * - greatest, smallest real roots. 25 * It stores the set of roots as a vector of complexes. 54 /** \returns the complex roots of the polynomial */ 55 inline const RootsType& roots() const { return m_roots; } in roots() function 58 /** Clear and fills the back insertion sequence with the real roots of the polynomial 59 * i.e. the real part of the complex roots that have an imaginary part which 307 * Computes the complex roots of a real polynomial. [all …]
|
/external/llvm/lib/CodeGen/ |
D | ShadowStackGC.cpp | 13 // to identify roots. 22 // In order to support this particular transformation, all stack roots are 44 /// roots. 52 /// Roots - GC roots in the current function. Each is a pair of the 54 std::vector<std::pair<CallInst*,AllocaInst*> > Roots; member in __anona77de0f30111::ShadowStackGC 210 for (unsigned I = 0; I != Roots.size(); ++I) { in GetFrameMap() 211 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1)); in GetFrameMap() 221 ConstantInt::get(Int32Ty, Roots.size(), false), in GetFrameMap() 263 for (size_t I = 0; I != Roots.size(); I++) in GetConcreteStackEntryType() 264 EltTys.push_back(Roots[I].second->getAllocatedType()); in GetConcreteStackEntryType() [all …]
|
/external/llvm/include/llvm/CodeGen/ |
D | GCMetadata.h | 19 // - Stack offsets for GC roots, as specified by calls to llvm.gcroot 21 // As a refinement, liveness analysis calculates the set of live roots at each 23 // generator, so all roots are assumed live. 95 std::vector<GCRoot> Roots; variable 105 // The bit vector is the more compact representation where >3.2% of roots 124 Roots.push_back(GCRoot(Num, Metadata)); in addStackRoot() 129 return Roots.erase(position); in removeStackRoot() 150 /// roots_begin/roots_end - Iterators for all roots in the function. 152 roots_iterator roots_begin() { return Roots.begin(); } in roots_begin() 153 roots_iterator roots_end () { return Roots.end(); } in roots_end() [all …]
|