1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // This file is an internal atomic implementation, use atomicops.h instead.
29
30 #ifndef V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_
31 #define V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_
32
33 namespace v8 {
34 namespace base {
35
36 // Atomically execute:
37 // result = *ptr;
38 // if (*ptr == old_value)
39 // *ptr = new_value;
40 // return result;
41 //
42 // I.e., replace "*ptr" with "new_value" if "*ptr" used to be "old_value".
43 // Always return the old value of "*ptr"
44 //
45 // This routine implies no memory barriers.
NoBarrier_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)46 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
47 Atomic32 old_value,
48 Atomic32 new_value) {
49 Atomic32 prev, tmp;
50 __asm__ __volatile__(".set push\n"
51 ".set noreorder\n"
52 "1:\n"
53 "ll %0, %5\n" // prev = *ptr
54 "bne %0, %3, 2f\n" // if (prev != old_value) goto 2
55 "move %2, %4\n" // tmp = new_value
56 "sc %2, %1\n" // *ptr = tmp (with atomic check)
57 "beqz %2, 1b\n" // start again on atomic error
58 "nop\n" // delay slot nop
59 "2:\n"
60 ".set pop\n"
61 : "=&r" (prev), "=m" (*ptr), "=&r" (tmp)
62 : "r" (old_value), "r" (new_value), "m" (*ptr)
63 : "memory");
64 return prev;
65 }
66
67 // Atomically store new_value into *ptr, returning the previous value held in
68 // *ptr. This routine implies no memory barriers.
NoBarrier_AtomicExchange(volatile Atomic32 * ptr,Atomic32 new_value)69 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
70 Atomic32 new_value) {
71 Atomic32 temp, old;
72 __asm__ __volatile__(".set push\n"
73 ".set noreorder\n"
74 "1:\n"
75 "ll %1, %2\n" // old = *ptr
76 "move %0, %3\n" // temp = new_value
77 "sc %0, %2\n" // *ptr = temp (with atomic check)
78 "beqz %0, 1b\n" // start again on atomic error
79 "nop\n" // delay slot nop
80 ".set pop\n"
81 : "=&r" (temp), "=&r" (old), "=m" (*ptr)
82 : "r" (new_value), "m" (*ptr)
83 : "memory");
84
85 return old;
86 }
87
88 // Atomically increment *ptr by "increment". Returns the new value of
89 // *ptr with the increment applied. This routine implies no memory barriers.
NoBarrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)90 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
91 Atomic32 increment) {
92 Atomic32 temp, temp2;
93
94 __asm__ __volatile__(".set push\n"
95 ".set noreorder\n"
96 "1:\n"
97 "ll %0, %2\n" // temp = *ptr
98 "addu %1, %0, %3\n" // temp2 = temp + increment
99 "sc %1, %2\n" // *ptr = temp2 (with atomic check)
100 "beqz %1, 1b\n" // start again on atomic error
101 "addu %1, %0, %3\n" // temp2 = temp + increment
102 ".set pop\n"
103 : "=&r" (temp), "=&r" (temp2), "=m" (*ptr)
104 : "Ir" (increment), "m" (*ptr)
105 : "memory");
106 // temp2 now holds the final value.
107 return temp2;
108 }
109
Barrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)110 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
111 Atomic32 increment) {
112 MemoryBarrier();
113 Atomic32 res = NoBarrier_AtomicIncrement(ptr, increment);
114 MemoryBarrier();
115 return res;
116 }
117
118 // "Acquire" operations
119 // ensure that no later memory access can be reordered ahead of the operation.
120 // "Release" operations ensure that no previous memory access can be reordered
121 // after the operation. "Barrier" operations have both "Acquire" and "Release"
122 // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory
123 // access.
Acquire_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)124 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
125 Atomic32 old_value,
126 Atomic32 new_value) {
127 Atomic32 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
128 MemoryBarrier();
129 return res;
130 }
131
Release_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)132 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
133 Atomic32 old_value,
134 Atomic32 new_value) {
135 MemoryBarrier();
136 return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
137 }
138
NoBarrier_Store(volatile Atomic8 * ptr,Atomic8 value)139 inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) {
140 *ptr = value;
141 }
142
NoBarrier_Store(volatile Atomic32 * ptr,Atomic32 value)143 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
144 *ptr = value;
145 }
146
MemoryBarrier()147 inline void MemoryBarrier() {
148 __asm__ __volatile__("sync" : : : "memory");
149 }
150
Acquire_Store(volatile Atomic32 * ptr,Atomic32 value)151 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
152 *ptr = value;
153 MemoryBarrier();
154 }
155
Release_Store(volatile Atomic32 * ptr,Atomic32 value)156 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
157 MemoryBarrier();
158 *ptr = value;
159 }
160
NoBarrier_Load(volatile const Atomic8 * ptr)161 inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) {
162 return *ptr;
163 }
164
NoBarrier_Load(volatile const Atomic32 * ptr)165 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
166 return *ptr;
167 }
168
Acquire_Load(volatile const Atomic32 * ptr)169 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
170 Atomic32 value = *ptr;
171 MemoryBarrier();
172 return value;
173 }
174
Release_Load(volatile const Atomic32 * ptr)175 inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
176 MemoryBarrier();
177 return *ptr;
178 }
179
180
181 // 64-bit versions of the atomic ops.
182
NoBarrier_CompareAndSwap(volatile Atomic64 * ptr,Atomic64 old_value,Atomic64 new_value)183 inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
184 Atomic64 old_value,
185 Atomic64 new_value) {
186 Atomic64 prev, tmp;
187 __asm__ __volatile__(".set push\n"
188 ".set noreorder\n"
189 "1:\n"
190 "lld %0, %5\n" // prev = *ptr
191 "bne %0, %3, 2f\n" // if (prev != old_value) goto 2
192 "move %2, %4\n" // tmp = new_value
193 "scd %2, %1\n" // *ptr = tmp (with atomic check)
194 "beqz %2, 1b\n" // start again on atomic error
195 "nop\n" // delay slot nop
196 "2:\n"
197 ".set pop\n"
198 : "=&r" (prev), "=m" (*ptr), "=&r" (tmp)
199 : "r" (old_value), "r" (new_value), "m" (*ptr)
200 : "memory");
201 return prev;
202 }
203
204 // Atomically store new_value into *ptr, returning the previous value held in
205 // *ptr. This routine implies no memory barriers.
NoBarrier_AtomicExchange(volatile Atomic64 * ptr,Atomic64 new_value)206 inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
207 Atomic64 new_value) {
208 Atomic64 temp, old;
209 __asm__ __volatile__(".set push\n"
210 ".set noreorder\n"
211 "1:\n"
212 "lld %1, %2\n" // old = *ptr
213 "move %0, %3\n" // temp = new_value
214 "scd %0, %2\n" // *ptr = temp (with atomic check)
215 "beqz %0, 1b\n" // start again on atomic error
216 "nop\n" // delay slot nop
217 ".set pop\n"
218 : "=&r" (temp), "=&r" (old), "=m" (*ptr)
219 : "r" (new_value), "m" (*ptr)
220 : "memory");
221
222 return old;
223 }
224
225 // Atomically increment *ptr by "increment". Returns the new value of
226 // *ptr with the increment applied. This routine implies no memory barriers.
NoBarrier_AtomicIncrement(volatile Atomic64 * ptr,Atomic64 increment)227 inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
228 Atomic64 increment) {
229 Atomic64 temp, temp2;
230
231 __asm__ __volatile__(".set push\n"
232 ".set noreorder\n"
233 "1:\n"
234 "lld %0, %2\n" // temp = *ptr
235 "daddu %1, %0, %3\n" // temp2 = temp + increment
236 "scd %1, %2\n" // *ptr = temp2 (with atomic check)
237 "beqz %1, 1b\n" // start again on atomic error
238 "daddu %1, %0, %3\n" // temp2 = temp + increment
239 ".set pop\n"
240 : "=&r" (temp), "=&r" (temp2), "=m" (*ptr)
241 : "Ir" (increment), "m" (*ptr)
242 : "memory");
243 // temp2 now holds the final value.
244 return temp2;
245 }
246
Barrier_AtomicIncrement(volatile Atomic64 * ptr,Atomic64 increment)247 inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
248 Atomic64 increment) {
249 MemoryBarrier();
250 Atomic64 res = NoBarrier_AtomicIncrement(ptr, increment);
251 MemoryBarrier();
252 return res;
253 }
254
255 // "Acquire" operations
256 // ensure that no later memory access can be reordered ahead of the operation.
257 // "Release" operations ensure that no previous memory access can be reordered
258 // after the operation. "Barrier" operations have both "Acquire" and "Release"
259 // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory
260 // access.
Acquire_CompareAndSwap(volatile Atomic64 * ptr,Atomic64 old_value,Atomic64 new_value)261 inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
262 Atomic64 old_value,
263 Atomic64 new_value) {
264 Atomic64 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
265 MemoryBarrier();
266 return res;
267 }
268
Release_CompareAndSwap(volatile Atomic64 * ptr,Atomic64 old_value,Atomic64 new_value)269 inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
270 Atomic64 old_value,
271 Atomic64 new_value) {
272 MemoryBarrier();
273 return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
274 }
275
NoBarrier_Store(volatile Atomic64 * ptr,Atomic64 value)276 inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
277 *ptr = value;
278 }
279
Acquire_Store(volatile Atomic64 * ptr,Atomic64 value)280 inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
281 *ptr = value;
282 MemoryBarrier();
283 }
284
Release_Store(volatile Atomic64 * ptr,Atomic64 value)285 inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
286 MemoryBarrier();
287 *ptr = value;
288 }
289
NoBarrier_Load(volatile const Atomic64 * ptr)290 inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
291 return *ptr;
292 }
293
Acquire_Load(volatile const Atomic64 * ptr)294 inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
295 Atomic64 value = *ptr;
296 MemoryBarrier();
297 return value;
298 }
299
Release_Load(volatile const Atomic64 * ptr)300 inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
301 MemoryBarrier();
302 return *ptr;
303 }
304
305 } // namespace base
306 } // namespace v8
307
308 #endif // V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_
309