1#! /usr/bin/env perl 2# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16# 17# April 2010 18# 19# The module implements "4-bit" GCM GHASH function and underlying 20# single multiplication operation in GF(2^128). "4-bit" means that it 21# uses 256 bytes per-key table [+32 bytes shared table]. There is no 22# experimental performance data available yet. The only approximation 23# that can be made at this point is based on code size. Inner loop is 24# 32 instructions long and on single-issue core should execute in <40 25# cycles. Having verified that gcc 3.4 didn't unroll corresponding 26# loop, this assembler loop body was found to be ~3x smaller than 27# compiler-generated one... 28# 29# July 2010 30# 31# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on 32# Cortex A8 core and ~25 cycles per processed byte (which was observed 33# to be ~3 times faster than gcc-generated code:-) 34# 35# February 2011 36# 37# Profiler-assisted and platform-specific optimization resulted in 7% 38# improvement on Cortex A8 core and ~23.5 cycles per byte. 39# 40# March 2011 41# 42# Add NEON implementation featuring polynomial multiplication, i.e. no 43# lookup tables involved. On Cortex A8 it was measured to process one 44# byte in 15 cycles or 55% faster than integer-only code. 45# 46# April 2014 47# 48# Switch to multiplication algorithm suggested in paper referred 49# below and combine it with reduction algorithm from x86 module. 50# Performance improvement over previous version varies from 65% on 51# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8 52# processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63, 53# Snapdragon S4 - in 9.33. 54# 55# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software 56# Polynomial Multiplication on ARM Processors using the NEON Engine. 57# 58# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf 59 60# ==================================================================== 61# Note about "528B" variant. In ARM case it makes lesser sense to 62# implement it for following reasons: 63# 64# - performance improvement won't be anywhere near 50%, because 128- 65# bit shift operation is neatly fused with 128-bit xor here, and 66# "538B" variant would eliminate only 4-5 instructions out of 32 67# in the inner loop (meaning that estimated improvement is ~15%); 68# - ARM-based systems are often embedded ones and extra memory 69# consumption might be unappreciated (for so little improvement); 70# 71# Byte order [in]dependence. ========================================= 72# 73# Caller is expected to maintain specific *dword* order in Htable, 74# namely with *least* significant dword of 128-bit value at *lower* 75# address. This differs completely from C code and has everything to 76# do with ldm instruction and order in which dwords are "consumed" by 77# algorithm. *Byte* order within these dwords in turn is whatever 78# *native* byte order on current platform. See gcm128.c for working 79# example... 80 81$flavour = shift; 82if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } 83else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } 84 85if ($flavour && $flavour ne "void") { 86 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 87 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or 88 ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or 89 die "can't locate arm-xlate.pl"; 90 91 open STDOUT,"| \"$^X\" $xlate $flavour $output"; 92} else { 93 open STDOUT,">$output"; 94} 95 96$Xi="r0"; # argument block 97$Htbl="r1"; 98$inp="r2"; 99$len="r3"; 100 101$Zll="r4"; # variables 102$Zlh="r5"; 103$Zhl="r6"; 104$Zhh="r7"; 105$Tll="r8"; 106$Tlh="r9"; 107$Thl="r10"; 108$Thh="r11"; 109$nlo="r12"; 110################# r13 is stack pointer 111$nhi="r14"; 112################# r15 is program counter 113 114$rem_4bit=$inp; # used in gcm_gmult_4bit 115$cnt=$len; 116 117sub Zsmash() { 118 my $i=12; 119 my @args=@_; 120 for ($Zll,$Zlh,$Zhl,$Zhh) { 121 $code.=<<___; 122#if __ARM_ARCH__>=7 && defined(__ARMEL__) 123 rev $_,$_ 124 str $_,[$Xi,#$i] 125#elif defined(__ARMEB__) 126 str $_,[$Xi,#$i] 127#else 128 mov $Tlh,$_,lsr#8 129 strb $_,[$Xi,#$i+3] 130 mov $Thl,$_,lsr#16 131 strb $Tlh,[$Xi,#$i+2] 132 mov $Thh,$_,lsr#24 133 strb $Thl,[$Xi,#$i+1] 134 strb $Thh,[$Xi,#$i] 135#endif 136___ 137 $code.="\t".shift(@args)."\n"; 138 $i-=4; 139 } 140} 141 142$code=<<___; 143#include <openssl/arm_arch.h> 144 145.text 146#if defined(__thumb2__) || defined(__clang__) 147.syntax unified 148#endif 149#if defined(__thumb2__) 150.thumb 151#else 152.code 32 153#endif 154 155#ifdef __clang__ 156#define ldrplb ldrbpl 157#define ldrneb ldrbne 158#endif 159 160.type rem_4bit,%object 161.align 5 162rem_4bit: 163.short 0x0000,0x1C20,0x3840,0x2460 164.short 0x7080,0x6CA0,0x48C0,0x54E0 165.short 0xE100,0xFD20,0xD940,0xC560 166.short 0x9180,0x8DA0,0xA9C0,0xB5E0 167.size rem_4bit,.-rem_4bit 168 169.type rem_4bit_get,%function 170rem_4bit_get: 171#if defined(__thumb2__) 172 adr $rem_4bit,rem_4bit 173#else 174 sub $rem_4bit,pc,#8+32 @ &rem_4bit 175#endif 176 b .Lrem_4bit_got 177 nop 178 nop 179.size rem_4bit_get,.-rem_4bit_get 180 181.global gcm_ghash_4bit 182.type gcm_ghash_4bit,%function 183.align 4 184gcm_ghash_4bit: 185#if defined(__thumb2__) 186 adr r12,rem_4bit 187#else 188 sub r12,pc,#8+48 @ &rem_4bit 189#endif 190 add $len,$inp,$len @ $len to point at the end 191 stmdb sp!,{r3-r11,lr} @ save $len/end too 192 193 ldmia r12,{r4-r11} @ copy rem_4bit ... 194 stmdb sp!,{r4-r11} @ ... to stack 195 196 ldrb $nlo,[$inp,#15] 197 ldrb $nhi,[$Xi,#15] 198.Louter: 199 eor $nlo,$nlo,$nhi 200 and $nhi,$nlo,#0xf0 201 and $nlo,$nlo,#0x0f 202 mov $cnt,#14 203 204 add $Zhh,$Htbl,$nlo,lsl#4 205 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] 206 add $Thh,$Htbl,$nhi 207 ldrb $nlo,[$inp,#14] 208 209 and $nhi,$Zll,#0xf @ rem 210 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 211 add $nhi,$nhi,$nhi 212 eor $Zll,$Tll,$Zll,lsr#4 213 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] 214 eor $Zll,$Zll,$Zlh,lsl#28 215 ldrb $nhi,[$Xi,#14] 216 eor $Zlh,$Tlh,$Zlh,lsr#4 217 eor $Zlh,$Zlh,$Zhl,lsl#28 218 eor $Zhl,$Thl,$Zhl,lsr#4 219 eor $Zhl,$Zhl,$Zhh,lsl#28 220 eor $Zhh,$Thh,$Zhh,lsr#4 221 eor $nlo,$nlo,$nhi 222 and $nhi,$nlo,#0xf0 223 and $nlo,$nlo,#0x0f 224 eor $Zhh,$Zhh,$Tll,lsl#16 225 226.Linner: 227 add $Thh,$Htbl,$nlo,lsl#4 228 and $nlo,$Zll,#0xf @ rem 229 subs $cnt,$cnt,#1 230 add $nlo,$nlo,$nlo 231 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] 232 eor $Zll,$Tll,$Zll,lsr#4 233 eor $Zll,$Zll,$Zlh,lsl#28 234 eor $Zlh,$Tlh,$Zlh,lsr#4 235 eor $Zlh,$Zlh,$Zhl,lsl#28 236 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] 237 eor $Zhl,$Thl,$Zhl,lsr#4 238#ifdef __thumb2__ 239 it pl 240#endif 241 ldrplb $nlo,[$inp,$cnt] 242 eor $Zhl,$Zhl,$Zhh,lsl#28 243 eor $Zhh,$Thh,$Zhh,lsr#4 244 245 add $Thh,$Htbl,$nhi 246 and $nhi,$Zll,#0xf @ rem 247 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] 248 add $nhi,$nhi,$nhi 249 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 250 eor $Zll,$Tll,$Zll,lsr#4 251#ifdef __thumb2__ 252 it pl 253#endif 254 ldrplb $Tll,[$Xi,$cnt] 255 eor $Zll,$Zll,$Zlh,lsl#28 256 eor $Zlh,$Tlh,$Zlh,lsr#4 257 ldrh $Tlh,[sp,$nhi] 258 eor $Zlh,$Zlh,$Zhl,lsl#28 259 eor $Zhl,$Thl,$Zhl,lsr#4 260 eor $Zhl,$Zhl,$Zhh,lsl#28 261#ifdef __thumb2__ 262 it pl 263#endif 264 eorpl $nlo,$nlo,$Tll 265 eor $Zhh,$Thh,$Zhh,lsr#4 266#ifdef __thumb2__ 267 itt pl 268#endif 269 andpl $nhi,$nlo,#0xf0 270 andpl $nlo,$nlo,#0x0f 271 eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] 272 bpl .Linner 273 274 ldr $len,[sp,#32] @ re-load $len/end 275 add $inp,$inp,#16 276 mov $nhi,$Zll 277___ 278 &Zsmash("cmp\t$inp,$len","\n". 279 "#ifdef __thumb2__\n". 280 " it ne\n". 281 "#endif\n". 282 " ldrneb $nlo,[$inp,#15]"); 283$code.=<<___; 284 bne .Louter 285 286 add sp,sp,#36 287#if __ARM_ARCH__>=5 288 ldmia sp!,{r4-r11,pc} 289#else 290 ldmia sp!,{r4-r11,lr} 291 tst lr,#1 292 moveq pc,lr @ be binary compatible with V4, yet 293 bx lr @ interoperable with Thumb ISA:-) 294#endif 295.size gcm_ghash_4bit,.-gcm_ghash_4bit 296 297.global gcm_gmult_4bit 298.type gcm_gmult_4bit,%function 299gcm_gmult_4bit: 300 stmdb sp!,{r4-r11,lr} 301 ldrb $nlo,[$Xi,#15] 302 b rem_4bit_get 303.Lrem_4bit_got: 304 and $nhi,$nlo,#0xf0 305 and $nlo,$nlo,#0x0f 306 mov $cnt,#14 307 308 add $Zhh,$Htbl,$nlo,lsl#4 309 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] 310 ldrb $nlo,[$Xi,#14] 311 312 add $Thh,$Htbl,$nhi 313 and $nhi,$Zll,#0xf @ rem 314 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 315 add $nhi,$nhi,$nhi 316 eor $Zll,$Tll,$Zll,lsr#4 317 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] 318 eor $Zll,$Zll,$Zlh,lsl#28 319 eor $Zlh,$Tlh,$Zlh,lsr#4 320 eor $Zlh,$Zlh,$Zhl,lsl#28 321 eor $Zhl,$Thl,$Zhl,lsr#4 322 eor $Zhl,$Zhl,$Zhh,lsl#28 323 eor $Zhh,$Thh,$Zhh,lsr#4 324 and $nhi,$nlo,#0xf0 325 eor $Zhh,$Zhh,$Tll,lsl#16 326 and $nlo,$nlo,#0x0f 327 328.Loop: 329 add $Thh,$Htbl,$nlo,lsl#4 330 and $nlo,$Zll,#0xf @ rem 331 subs $cnt,$cnt,#1 332 add $nlo,$nlo,$nlo 333 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] 334 eor $Zll,$Tll,$Zll,lsr#4 335 eor $Zll,$Zll,$Zlh,lsl#28 336 eor $Zlh,$Tlh,$Zlh,lsr#4 337 eor $Zlh,$Zlh,$Zhl,lsl#28 338 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] 339 eor $Zhl,$Thl,$Zhl,lsr#4 340#ifdef __thumb2__ 341 it pl 342#endif 343 ldrplb $nlo,[$Xi,$cnt] 344 eor $Zhl,$Zhl,$Zhh,lsl#28 345 eor $Zhh,$Thh,$Zhh,lsr#4 346 347 add $Thh,$Htbl,$nhi 348 and $nhi,$Zll,#0xf @ rem 349 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] 350 add $nhi,$nhi,$nhi 351 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 352 eor $Zll,$Tll,$Zll,lsr#4 353 eor $Zll,$Zll,$Zlh,lsl#28 354 eor $Zlh,$Tlh,$Zlh,lsr#4 355 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] 356 eor $Zlh,$Zlh,$Zhl,lsl#28 357 eor $Zhl,$Thl,$Zhl,lsr#4 358 eor $Zhl,$Zhl,$Zhh,lsl#28 359 eor $Zhh,$Thh,$Zhh,lsr#4 360#ifdef __thumb2__ 361 itt pl 362#endif 363 andpl $nhi,$nlo,#0xf0 364 andpl $nlo,$nlo,#0x0f 365 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] 366 bpl .Loop 367___ 368 &Zsmash(); 369$code.=<<___; 370#if __ARM_ARCH__>=5 371 ldmia sp!,{r4-r11,pc} 372#else 373 ldmia sp!,{r4-r11,lr} 374 tst lr,#1 375 moveq pc,lr @ be binary compatible with V4, yet 376 bx lr @ interoperable with Thumb ISA:-) 377#endif 378.size gcm_gmult_4bit,.-gcm_gmult_4bit 379___ 380{ 381my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); 382my ($t0,$t1,$t2,$t3)=map("q$_",(8..12)); 383my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31)); 384 385sub clmul64x64 { 386my ($r,$a,$b)=@_; 387$code.=<<___; 388 vext.8 $t0#lo, $a, $a, #1 @ A1 389 vmull.p8 $t0, $t0#lo, $b @ F = A1*B 390 vext.8 $r#lo, $b, $b, #1 @ B1 391 vmull.p8 $r, $a, $r#lo @ E = A*B1 392 vext.8 $t1#lo, $a, $a, #2 @ A2 393 vmull.p8 $t1, $t1#lo, $b @ H = A2*B 394 vext.8 $t3#lo, $b, $b, #2 @ B2 395 vmull.p8 $t3, $a, $t3#lo @ G = A*B2 396 vext.8 $t2#lo, $a, $a, #3 @ A3 397 veor $t0, $t0, $r @ L = E + F 398 vmull.p8 $t2, $t2#lo, $b @ J = A3*B 399 vext.8 $r#lo, $b, $b, #3 @ B3 400 veor $t1, $t1, $t3 @ M = G + H 401 vmull.p8 $r, $a, $r#lo @ I = A*B3 402 veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8 403 vand $t0#hi, $t0#hi, $k48 404 vext.8 $t3#lo, $b, $b, #4 @ B4 405 veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16 406 vand $t1#hi, $t1#hi, $k32 407 vmull.p8 $t3, $a, $t3#lo @ K = A*B4 408 veor $t2, $t2, $r @ N = I + J 409 veor $t0#lo, $t0#lo, $t0#hi 410 veor $t1#lo, $t1#lo, $t1#hi 411 veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24 412 vand $t2#hi, $t2#hi, $k16 413 vext.8 $t0, $t0, $t0, #15 414 veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32 415 vmov.i64 $t3#hi, #0 416 vext.8 $t1, $t1, $t1, #14 417 veor $t2#lo, $t2#lo, $t2#hi 418 vmull.p8 $r, $a, $b @ D = A*B 419 vext.8 $t3, $t3, $t3, #12 420 vext.8 $t2, $t2, $t2, #13 421 veor $t0, $t0, $t1 422 veor $t2, $t2, $t3 423 veor $r, $r, $t0 424 veor $r, $r, $t2 425___ 426} 427 428$code.=<<___; 429#if __ARM_MAX_ARCH__>=7 430.arch armv7-a 431.fpu neon 432 433.global gcm_init_neon 434.type gcm_init_neon,%function 435.align 4 436gcm_init_neon: 437 vld1.64 $IN#hi,[r1]! @ load H 438 vmov.i8 $t0,#0xe1 439 vld1.64 $IN#lo,[r1] 440 vshl.i64 $t0#hi,#57 441 vshr.u64 $t0#lo,#63 @ t0=0xc2....01 442 vdup.8 $t1,$IN#hi[7] 443 vshr.u64 $Hlo,$IN#lo,#63 444 vshr.s8 $t1,#7 @ broadcast carry bit 445 vshl.i64 $IN,$IN,#1 446 vand $t0,$t0,$t1 447 vorr $IN#hi,$Hlo @ H<<<=1 448 veor $IN,$IN,$t0 @ twisted H 449 vstmia r0,{$IN} 450 451 ret @ bx lr 452.size gcm_init_neon,.-gcm_init_neon 453 454.global gcm_gmult_neon 455.type gcm_gmult_neon,%function 456.align 4 457gcm_gmult_neon: 458 vld1.64 $IN#hi,[$Xi]! @ load Xi 459 vld1.64 $IN#lo,[$Xi]! 460 vmov.i64 $k48,#0x0000ffffffffffff 461 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H 462 vmov.i64 $k32,#0x00000000ffffffff 463#ifdef __ARMEL__ 464 vrev64.8 $IN,$IN 465#endif 466 vmov.i64 $k16,#0x000000000000ffff 467 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing 468 mov $len,#16 469 b .Lgmult_neon 470.size gcm_gmult_neon,.-gcm_gmult_neon 471 472.global gcm_ghash_neon 473.type gcm_ghash_neon,%function 474.align 4 475gcm_ghash_neon: 476 vld1.64 $Xl#hi,[$Xi]! @ load Xi 477 vld1.64 $Xl#lo,[$Xi]! 478 vmov.i64 $k48,#0x0000ffffffffffff 479 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H 480 vmov.i64 $k32,#0x00000000ffffffff 481#ifdef __ARMEL__ 482 vrev64.8 $Xl,$Xl 483#endif 484 vmov.i64 $k16,#0x000000000000ffff 485 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing 486 487.Loop_neon: 488 vld1.64 $IN#hi,[$inp]! @ load inp 489 vld1.64 $IN#lo,[$inp]! 490#ifdef __ARMEL__ 491 vrev64.8 $IN,$IN 492#endif 493 veor $IN,$Xl @ inp^=Xi 494.Lgmult_neon: 495___ 496 &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo 497$code.=<<___; 498 veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing 499___ 500 &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi) 501 &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi 502$code.=<<___; 503 veor $Xm,$Xm,$Xl @ Karatsuba post-processing 504 veor $Xm,$Xm,$Xh 505 veor $Xl#hi,$Xl#hi,$Xm#lo 506 veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result 507 508 @ equivalent of reduction_avx from ghash-x86_64.pl 509 vshl.i64 $t1,$Xl,#57 @ 1st phase 510 vshl.i64 $t2,$Xl,#62 511 veor $t2,$t2,$t1 @ 512 vshl.i64 $t1,$Xl,#63 513 veor $t2, $t2, $t1 @ 514 veor $Xl#hi,$Xl#hi,$t2#lo @ 515 veor $Xh#lo,$Xh#lo,$t2#hi 516 517 vshr.u64 $t2,$Xl,#1 @ 2nd phase 518 veor $Xh,$Xh,$Xl 519 veor $Xl,$Xl,$t2 @ 520 vshr.u64 $t2,$t2,#6 521 vshr.u64 $Xl,$Xl,#1 @ 522 veor $Xl,$Xl,$Xh @ 523 veor $Xl,$Xl,$t2 @ 524 525 subs $len,#16 526 bne .Loop_neon 527 528#ifdef __ARMEL__ 529 vrev64.8 $Xl,$Xl 530#endif 531 sub $Xi,#16 532 vst1.64 $Xl#hi,[$Xi]! @ write out Xi 533 vst1.64 $Xl#lo,[$Xi] 534 535 ret @ bx lr 536.size gcm_ghash_neon,.-gcm_ghash_neon 537#endif 538___ 539} 540$code.=<<___; 541.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>" 542.align 2 543___ 544 545foreach (split("\n",$code)) { 546 s/\`([^\`]*)\`/eval $1/geo; 547 548 s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or 549 s/\bret\b/bx lr/go or 550 s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 551 552 print $_,"\n"; 553} 554close STDOUT; # enforce flush 555