• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#! /usr/bin/env perl
2# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# April 2010
18#
19# The module implements "4-bit" GCM GHASH function and underlying
20# single multiplication operation in GF(2^128). "4-bit" means that it
21# uses 256 bytes per-key table [+32 bytes shared table]. There is no
22# experimental performance data available yet. The only approximation
23# that can be made at this point is based on code size. Inner loop is
24# 32 instructions long and on single-issue core should execute in <40
25# cycles. Having verified that gcc 3.4 didn't unroll corresponding
26# loop, this assembler loop body was found to be ~3x smaller than
27# compiler-generated one...
28#
29# July 2010
30#
31# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
32# Cortex A8 core and ~25 cycles per processed byte (which was observed
33# to be ~3 times faster than gcc-generated code:-)
34#
35# February 2011
36#
37# Profiler-assisted and platform-specific optimization resulted in 7%
38# improvement on Cortex A8 core and ~23.5 cycles per byte.
39#
40# March 2011
41#
42# Add NEON implementation featuring polynomial multiplication, i.e. no
43# lookup tables involved. On Cortex A8 it was measured to process one
44# byte in 15 cycles or 55% faster than integer-only code.
45#
46# April 2014
47#
48# Switch to multiplication algorithm suggested in paper referred
49# below and combine it with reduction algorithm from x86 module.
50# Performance improvement over previous version varies from 65% on
51# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
52# processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63,
53# Snapdragon S4 - in 9.33.
54#
55# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
56# Polynomial Multiplication on ARM Processors using the NEON Engine.
57#
58# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
59
60# ====================================================================
61# Note about "528B" variant. In ARM case it makes lesser sense to
62# implement it for following reasons:
63#
64# - performance improvement won't be anywhere near 50%, because 128-
65#   bit shift operation is neatly fused with 128-bit xor here, and
66#   "538B" variant would eliminate only 4-5 instructions out of 32
67#   in the inner loop (meaning that estimated improvement is ~15%);
68# - ARM-based systems are often embedded ones and extra memory
69#   consumption might be unappreciated (for so little improvement);
70#
71# Byte order [in]dependence. =========================================
72#
73# Caller is expected to maintain specific *dword* order in Htable,
74# namely with *least* significant dword of 128-bit value at *lower*
75# address. This differs completely from C code and has everything to
76# do with ldm instruction and order in which dwords are "consumed" by
77# algorithm. *Byte* order within these dwords in turn is whatever
78# *native* byte order on current platform. See gcm128.c for working
79# example...
80
81$flavour = shift;
82if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
83else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }
84
85if ($flavour && $flavour ne "void") {
86    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
87    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
88    ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
89    die "can't locate arm-xlate.pl";
90
91    open STDOUT,"| \"$^X\" $xlate $flavour $output";
92} else {
93    open STDOUT,">$output";
94}
95
96$Xi="r0";	# argument block
97$Htbl="r1";
98$inp="r2";
99$len="r3";
100
101$Zll="r4";	# variables
102$Zlh="r5";
103$Zhl="r6";
104$Zhh="r7";
105$Tll="r8";
106$Tlh="r9";
107$Thl="r10";
108$Thh="r11";
109$nlo="r12";
110################# r13 is stack pointer
111$nhi="r14";
112################# r15 is program counter
113
114$rem_4bit=$inp;	# used in gcm_gmult_4bit
115$cnt=$len;
116
117sub Zsmash() {
118  my $i=12;
119  my @args=@_;
120  for ($Zll,$Zlh,$Zhl,$Zhh) {
121    $code.=<<___;
122#if __ARM_ARCH__>=7 && defined(__ARMEL__)
123	rev	$_,$_
124	str	$_,[$Xi,#$i]
125#elif defined(__ARMEB__)
126	str	$_,[$Xi,#$i]
127#else
128	mov	$Tlh,$_,lsr#8
129	strb	$_,[$Xi,#$i+3]
130	mov	$Thl,$_,lsr#16
131	strb	$Tlh,[$Xi,#$i+2]
132	mov	$Thh,$_,lsr#24
133	strb	$Thl,[$Xi,#$i+1]
134	strb	$Thh,[$Xi,#$i]
135#endif
136___
137    $code.="\t".shift(@args)."\n";
138    $i-=4;
139  }
140}
141
142$code=<<___;
143#include <openssl/arm_arch.h>
144
145.text
146#if defined(__thumb2__) || defined(__clang__)
147.syntax	unified
148#endif
149#if defined(__thumb2__)
150.thumb
151#else
152.code	32
153#endif
154
155#ifdef  __clang__
156#define ldrplb  ldrbpl
157#define ldrneb  ldrbne
158#endif
159
160.type	rem_4bit,%object
161.align	5
162rem_4bit:
163.short	0x0000,0x1C20,0x3840,0x2460
164.short	0x7080,0x6CA0,0x48C0,0x54E0
165.short	0xE100,0xFD20,0xD940,0xC560
166.short	0x9180,0x8DA0,0xA9C0,0xB5E0
167.size	rem_4bit,.-rem_4bit
168
169.type	rem_4bit_get,%function
170rem_4bit_get:
171#if defined(__thumb2__)
172	adr	$rem_4bit,rem_4bit
173#else
174	sub	$rem_4bit,pc,#8+32	@ &rem_4bit
175#endif
176	b	.Lrem_4bit_got
177	nop
178	nop
179.size	rem_4bit_get,.-rem_4bit_get
180
181.global	gcm_ghash_4bit
182.type	gcm_ghash_4bit,%function
183.align	4
184gcm_ghash_4bit:
185#if defined(__thumb2__)
186	adr	r12,rem_4bit
187#else
188	sub	r12,pc,#8+48		@ &rem_4bit
189#endif
190	add	$len,$inp,$len		@ $len to point at the end
191	stmdb	sp!,{r3-r11,lr}		@ save $len/end too
192
193	ldmia	r12,{r4-r11}		@ copy rem_4bit ...
194	stmdb	sp!,{r4-r11}		@ ... to stack
195
196	ldrb	$nlo,[$inp,#15]
197	ldrb	$nhi,[$Xi,#15]
198.Louter:
199	eor	$nlo,$nlo,$nhi
200	and	$nhi,$nlo,#0xf0
201	and	$nlo,$nlo,#0x0f
202	mov	$cnt,#14
203
204	add	$Zhh,$Htbl,$nlo,lsl#4
205	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
206	add	$Thh,$Htbl,$nhi
207	ldrb	$nlo,[$inp,#14]
208
209	and	$nhi,$Zll,#0xf		@ rem
210	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
211	add	$nhi,$nhi,$nhi
212	eor	$Zll,$Tll,$Zll,lsr#4
213	ldrh	$Tll,[sp,$nhi]		@ rem_4bit[rem]
214	eor	$Zll,$Zll,$Zlh,lsl#28
215	ldrb	$nhi,[$Xi,#14]
216	eor	$Zlh,$Tlh,$Zlh,lsr#4
217	eor	$Zlh,$Zlh,$Zhl,lsl#28
218	eor	$Zhl,$Thl,$Zhl,lsr#4
219	eor	$Zhl,$Zhl,$Zhh,lsl#28
220	eor	$Zhh,$Thh,$Zhh,lsr#4
221	eor	$nlo,$nlo,$nhi
222	and	$nhi,$nlo,#0xf0
223	and	$nlo,$nlo,#0x0f
224	eor	$Zhh,$Zhh,$Tll,lsl#16
225
226.Linner:
227	add	$Thh,$Htbl,$nlo,lsl#4
228	and	$nlo,$Zll,#0xf		@ rem
229	subs	$cnt,$cnt,#1
230	add	$nlo,$nlo,$nlo
231	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
232	eor	$Zll,$Tll,$Zll,lsr#4
233	eor	$Zll,$Zll,$Zlh,lsl#28
234	eor	$Zlh,$Tlh,$Zlh,lsr#4
235	eor	$Zlh,$Zlh,$Zhl,lsl#28
236	ldrh	$Tll,[sp,$nlo]		@ rem_4bit[rem]
237	eor	$Zhl,$Thl,$Zhl,lsr#4
238#ifdef	__thumb2__
239	it	pl
240#endif
241	ldrplb	$nlo,[$inp,$cnt]
242	eor	$Zhl,$Zhl,$Zhh,lsl#28
243	eor	$Zhh,$Thh,$Zhh,lsr#4
244
245	add	$Thh,$Htbl,$nhi
246	and	$nhi,$Zll,#0xf		@ rem
247	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
248	add	$nhi,$nhi,$nhi
249	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
250	eor	$Zll,$Tll,$Zll,lsr#4
251#ifdef	__thumb2__
252	it	pl
253#endif
254	ldrplb	$Tll,[$Xi,$cnt]
255	eor	$Zll,$Zll,$Zlh,lsl#28
256	eor	$Zlh,$Tlh,$Zlh,lsr#4
257	ldrh	$Tlh,[sp,$nhi]
258	eor	$Zlh,$Zlh,$Zhl,lsl#28
259	eor	$Zhl,$Thl,$Zhl,lsr#4
260	eor	$Zhl,$Zhl,$Zhh,lsl#28
261#ifdef	__thumb2__
262	it	pl
263#endif
264	eorpl	$nlo,$nlo,$Tll
265	eor	$Zhh,$Thh,$Zhh,lsr#4
266#ifdef	__thumb2__
267	itt	pl
268#endif
269	andpl	$nhi,$nlo,#0xf0
270	andpl	$nlo,$nlo,#0x0f
271	eor	$Zhh,$Zhh,$Tlh,lsl#16	@ ^= rem_4bit[rem]
272	bpl	.Linner
273
274	ldr	$len,[sp,#32]		@ re-load $len/end
275	add	$inp,$inp,#16
276	mov	$nhi,$Zll
277___
278	&Zsmash("cmp\t$inp,$len","\n".
279				 "#ifdef __thumb2__\n".
280				 "	it	ne\n".
281				 "#endif\n".
282				 "	ldrneb	$nlo,[$inp,#15]");
283$code.=<<___;
284	bne	.Louter
285
286	add	sp,sp,#36
287#if __ARM_ARCH__>=5
288	ldmia	sp!,{r4-r11,pc}
289#else
290	ldmia	sp!,{r4-r11,lr}
291	tst	lr,#1
292	moveq	pc,lr			@ be binary compatible with V4, yet
293	bx	lr			@ interoperable with Thumb ISA:-)
294#endif
295.size	gcm_ghash_4bit,.-gcm_ghash_4bit
296
297.global	gcm_gmult_4bit
298.type	gcm_gmult_4bit,%function
299gcm_gmult_4bit:
300	stmdb	sp!,{r4-r11,lr}
301	ldrb	$nlo,[$Xi,#15]
302	b	rem_4bit_get
303.Lrem_4bit_got:
304	and	$nhi,$nlo,#0xf0
305	and	$nlo,$nlo,#0x0f
306	mov	$cnt,#14
307
308	add	$Zhh,$Htbl,$nlo,lsl#4
309	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
310	ldrb	$nlo,[$Xi,#14]
311
312	add	$Thh,$Htbl,$nhi
313	and	$nhi,$Zll,#0xf		@ rem
314	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
315	add	$nhi,$nhi,$nhi
316	eor	$Zll,$Tll,$Zll,lsr#4
317	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
318	eor	$Zll,$Zll,$Zlh,lsl#28
319	eor	$Zlh,$Tlh,$Zlh,lsr#4
320	eor	$Zlh,$Zlh,$Zhl,lsl#28
321	eor	$Zhl,$Thl,$Zhl,lsr#4
322	eor	$Zhl,$Zhl,$Zhh,lsl#28
323	eor	$Zhh,$Thh,$Zhh,lsr#4
324	and	$nhi,$nlo,#0xf0
325	eor	$Zhh,$Zhh,$Tll,lsl#16
326	and	$nlo,$nlo,#0x0f
327
328.Loop:
329	add	$Thh,$Htbl,$nlo,lsl#4
330	and	$nlo,$Zll,#0xf		@ rem
331	subs	$cnt,$cnt,#1
332	add	$nlo,$nlo,$nlo
333	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
334	eor	$Zll,$Tll,$Zll,lsr#4
335	eor	$Zll,$Zll,$Zlh,lsl#28
336	eor	$Zlh,$Tlh,$Zlh,lsr#4
337	eor	$Zlh,$Zlh,$Zhl,lsl#28
338	ldrh	$Tll,[$rem_4bit,$nlo]	@ rem_4bit[rem]
339	eor	$Zhl,$Thl,$Zhl,lsr#4
340#ifdef	__thumb2__
341	it	pl
342#endif
343	ldrplb	$nlo,[$Xi,$cnt]
344	eor	$Zhl,$Zhl,$Zhh,lsl#28
345	eor	$Zhh,$Thh,$Zhh,lsr#4
346
347	add	$Thh,$Htbl,$nhi
348	and	$nhi,$Zll,#0xf		@ rem
349	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
350	add	$nhi,$nhi,$nhi
351	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
352	eor	$Zll,$Tll,$Zll,lsr#4
353	eor	$Zll,$Zll,$Zlh,lsl#28
354	eor	$Zlh,$Tlh,$Zlh,lsr#4
355	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
356	eor	$Zlh,$Zlh,$Zhl,lsl#28
357	eor	$Zhl,$Thl,$Zhl,lsr#4
358	eor	$Zhl,$Zhl,$Zhh,lsl#28
359	eor	$Zhh,$Thh,$Zhh,lsr#4
360#ifdef	__thumb2__
361	itt	pl
362#endif
363	andpl	$nhi,$nlo,#0xf0
364	andpl	$nlo,$nlo,#0x0f
365	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
366	bpl	.Loop
367___
368	&Zsmash();
369$code.=<<___;
370#if __ARM_ARCH__>=5
371	ldmia	sp!,{r4-r11,pc}
372#else
373	ldmia	sp!,{r4-r11,lr}
374	tst	lr,#1
375	moveq	pc,lr			@ be binary compatible with V4, yet
376	bx	lr			@ interoperable with Thumb ISA:-)
377#endif
378.size	gcm_gmult_4bit,.-gcm_gmult_4bit
379___
380{
381my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
382my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
383my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
384
385sub clmul64x64 {
386my ($r,$a,$b)=@_;
387$code.=<<___;
388	vext.8		$t0#lo, $a, $a, #1	@ A1
389	vmull.p8	$t0, $t0#lo, $b		@ F = A1*B
390	vext.8		$r#lo, $b, $b, #1	@ B1
391	vmull.p8	$r, $a, $r#lo		@ E = A*B1
392	vext.8		$t1#lo, $a, $a, #2	@ A2
393	vmull.p8	$t1, $t1#lo, $b		@ H = A2*B
394	vext.8		$t3#lo, $b, $b, #2	@ B2
395	vmull.p8	$t3, $a, $t3#lo		@ G = A*B2
396	vext.8		$t2#lo, $a, $a, #3	@ A3
397	veor		$t0, $t0, $r		@ L = E + F
398	vmull.p8	$t2, $t2#lo, $b		@ J = A3*B
399	vext.8		$r#lo, $b, $b, #3	@ B3
400	veor		$t1, $t1, $t3		@ M = G + H
401	vmull.p8	$r, $a, $r#lo		@ I = A*B3
402	veor		$t0#lo, $t0#lo, $t0#hi	@ t0 = (L) (P0 + P1) << 8
403	vand		$t0#hi, $t0#hi, $k48
404	vext.8		$t3#lo, $b, $b, #4	@ B4
405	veor		$t1#lo, $t1#lo, $t1#hi	@ t1 = (M) (P2 + P3) << 16
406	vand		$t1#hi, $t1#hi, $k32
407	vmull.p8	$t3, $a, $t3#lo		@ K = A*B4
408	veor		$t2, $t2, $r		@ N = I + J
409	veor		$t0#lo, $t0#lo, $t0#hi
410	veor		$t1#lo, $t1#lo, $t1#hi
411	veor		$t2#lo, $t2#lo, $t2#hi	@ t2 = (N) (P4 + P5) << 24
412	vand		$t2#hi, $t2#hi, $k16
413	vext.8		$t0, $t0, $t0, #15
414	veor		$t3#lo, $t3#lo, $t3#hi	@ t3 = (K) (P6 + P7) << 32
415	vmov.i64	$t3#hi, #0
416	vext.8		$t1, $t1, $t1, #14
417	veor		$t2#lo, $t2#lo, $t2#hi
418	vmull.p8	$r, $a, $b		@ D = A*B
419	vext.8		$t3, $t3, $t3, #12
420	vext.8		$t2, $t2, $t2, #13
421	veor		$t0, $t0, $t1
422	veor		$t2, $t2, $t3
423	veor		$r, $r, $t0
424	veor		$r, $r, $t2
425___
426}
427
428$code.=<<___;
429#if __ARM_MAX_ARCH__>=7
430.arch	armv7-a
431.fpu	neon
432
433.global	gcm_init_neon
434.type	gcm_init_neon,%function
435.align	4
436gcm_init_neon:
437	vld1.64		$IN#hi,[r1]!		@ load H
438	vmov.i8		$t0,#0xe1
439	vld1.64		$IN#lo,[r1]
440	vshl.i64	$t0#hi,#57
441	vshr.u64	$t0#lo,#63		@ t0=0xc2....01
442	vdup.8		$t1,$IN#hi[7]
443	vshr.u64	$Hlo,$IN#lo,#63
444	vshr.s8		$t1,#7			@ broadcast carry bit
445	vshl.i64	$IN,$IN,#1
446	vand		$t0,$t0,$t1
447	vorr		$IN#hi,$Hlo		@ H<<<=1
448	veor		$IN,$IN,$t0		@ twisted H
449	vstmia		r0,{$IN}
450
451	ret					@ bx lr
452.size	gcm_init_neon,.-gcm_init_neon
453
454.global	gcm_gmult_neon
455.type	gcm_gmult_neon,%function
456.align	4
457gcm_gmult_neon:
458	vld1.64		$IN#hi,[$Xi]!		@ load Xi
459	vld1.64		$IN#lo,[$Xi]!
460	vmov.i64	$k48,#0x0000ffffffffffff
461	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
462	vmov.i64	$k32,#0x00000000ffffffff
463#ifdef __ARMEL__
464	vrev64.8	$IN,$IN
465#endif
466	vmov.i64	$k16,#0x000000000000ffff
467	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing
468	mov		$len,#16
469	b		.Lgmult_neon
470.size	gcm_gmult_neon,.-gcm_gmult_neon
471
472.global	gcm_ghash_neon
473.type	gcm_ghash_neon,%function
474.align	4
475gcm_ghash_neon:
476	vld1.64		$Xl#hi,[$Xi]!		@ load Xi
477	vld1.64		$Xl#lo,[$Xi]!
478	vmov.i64	$k48,#0x0000ffffffffffff
479	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
480	vmov.i64	$k32,#0x00000000ffffffff
481#ifdef __ARMEL__
482	vrev64.8	$Xl,$Xl
483#endif
484	vmov.i64	$k16,#0x000000000000ffff
485	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing
486
487.Loop_neon:
488	vld1.64		$IN#hi,[$inp]!		@ load inp
489	vld1.64		$IN#lo,[$inp]!
490#ifdef __ARMEL__
491	vrev64.8	$IN,$IN
492#endif
493	veor		$IN,$Xl			@ inp^=Xi
494.Lgmult_neon:
495___
496	&clmul64x64	($Xl,$Hlo,"$IN#lo");	# H.lo·Xi.lo
497$code.=<<___;
498	veor		$IN#lo,$IN#lo,$IN#hi	@ Karatsuba pre-processing
499___
500	&clmul64x64	($Xm,$Hhl,"$IN#lo");	# (H.lo+H.hi)·(Xi.lo+Xi.hi)
501	&clmul64x64	($Xh,$Hhi,"$IN#hi");	# H.hi·Xi.hi
502$code.=<<___;
503	veor		$Xm,$Xm,$Xl		@ Karatsuba post-processing
504	veor		$Xm,$Xm,$Xh
505	veor		$Xl#hi,$Xl#hi,$Xm#lo
506	veor		$Xh#lo,$Xh#lo,$Xm#hi	@ Xh|Xl - 256-bit result
507
508	@ equivalent of reduction_avx from ghash-x86_64.pl
509	vshl.i64	$t1,$Xl,#57		@ 1st phase
510	vshl.i64	$t2,$Xl,#62
511	veor		$t2,$t2,$t1		@
512	vshl.i64	$t1,$Xl,#63
513	veor		$t2, $t2, $t1		@
514 	veor		$Xl#hi,$Xl#hi,$t2#lo	@
515	veor		$Xh#lo,$Xh#lo,$t2#hi
516
517	vshr.u64	$t2,$Xl,#1		@ 2nd phase
518	veor		$Xh,$Xh,$Xl
519	veor		$Xl,$Xl,$t2		@
520	vshr.u64	$t2,$t2,#6
521	vshr.u64	$Xl,$Xl,#1		@
522	veor		$Xl,$Xl,$Xh		@
523	veor		$Xl,$Xl,$t2		@
524
525	subs		$len,#16
526	bne		.Loop_neon
527
528#ifdef __ARMEL__
529	vrev64.8	$Xl,$Xl
530#endif
531	sub		$Xi,#16
532	vst1.64		$Xl#hi,[$Xi]!		@ write out Xi
533	vst1.64		$Xl#lo,[$Xi]
534
535	ret					@ bx lr
536.size	gcm_ghash_neon,.-gcm_ghash_neon
537#endif
538___
539}
540$code.=<<___;
541.asciz  "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
542.align  2
543___
544
545foreach (split("\n",$code)) {
546	s/\`([^\`]*)\`/eval $1/geo;
547
548	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
549	s/\bret\b/bx	lr/go		or
550	s/\bbx\s+lr\b/.word\t0xe12fff1e/go;    # make it possible to compile with -march=armv4
551
552	print $_,"\n";
553}
554close STDOUT; # enforce flush
555