1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_IA32
6
7 #include "src/code-stubs.h"
8 #include "src/api-arguments.h"
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/codegen.h"
12 #include "src/ia32/code-stubs-ia32.h"
13 #include "src/ia32/frames-ia32.h"
14 #include "src/ic/handler-compiler.h"
15 #include "src/ic/ic.h"
16 #include "src/ic/stub-cache.h"
17 #include "src/isolate.h"
18 #include "src/regexp/jsregexp.h"
19 #include "src/regexp/regexp-macro-assembler.h"
20 #include "src/runtime/runtime.h"
21
22 namespace v8 {
23 namespace internal {
24
25 #define __ ACCESS_MASM(masm)
26
Generate(MacroAssembler * masm)27 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
28 __ pop(ecx);
29 __ mov(MemOperand(esp, eax, times_4, 0), edi);
30 __ push(edi);
31 __ push(ebx);
32 __ push(ecx);
33 __ add(eax, Immediate(3));
34 __ TailCallRuntime(Runtime::kNewArray);
35 }
36
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)37 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
38 ExternalReference miss) {
39 // Update the static counter each time a new code stub is generated.
40 isolate()->counters()->code_stubs()->Increment();
41
42 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
43 int param_count = descriptor.GetRegisterParameterCount();
44 {
45 // Call the runtime system in a fresh internal frame.
46 FrameScope scope(masm, StackFrame::INTERNAL);
47 DCHECK(param_count == 0 ||
48 eax.is(descriptor.GetRegisterParameter(param_count - 1)));
49 // Push arguments
50 for (int i = 0; i < param_count; ++i) {
51 __ push(descriptor.GetRegisterParameter(i));
52 }
53 __ CallExternalReference(miss, param_count);
54 }
55
56 __ ret(0);
57 }
58
59
Generate(MacroAssembler * masm)60 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
61 // We don't allow a GC during a store buffer overflow so there is no need to
62 // store the registers in any particular way, but we do have to store and
63 // restore them.
64 __ pushad();
65 if (save_doubles()) {
66 __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
67 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
68 XMMRegister reg = XMMRegister::from_code(i);
69 __ movsd(Operand(esp, i * kDoubleSize), reg);
70 }
71 }
72 const int argument_count = 1;
73
74 AllowExternalCallThatCantCauseGC scope(masm);
75 __ PrepareCallCFunction(argument_count, ecx);
76 __ mov(Operand(esp, 0 * kPointerSize),
77 Immediate(ExternalReference::isolate_address(isolate())));
78 __ CallCFunction(
79 ExternalReference::store_buffer_overflow_function(isolate()),
80 argument_count);
81 if (save_doubles()) {
82 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
83 XMMRegister reg = XMMRegister::from_code(i);
84 __ movsd(reg, Operand(esp, i * kDoubleSize));
85 }
86 __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
87 }
88 __ popad();
89 __ ret(0);
90 }
91
92
93 class FloatingPointHelper : public AllStatic {
94 public:
95 enum ArgLocation {
96 ARGS_ON_STACK,
97 ARGS_IN_REGISTERS
98 };
99
100 // Code pattern for loading a floating point value. Input value must
101 // be either a smi or a heap number object (fp value). Requirements:
102 // operand in register number. Returns operand as floating point number
103 // on FPU stack.
104 static void LoadFloatOperand(MacroAssembler* masm, Register number);
105
106 // Test if operands are smi or number objects (fp). Requirements:
107 // operand_1 in eax, operand_2 in edx; falls through on float
108 // operands, jumps to the non_float label otherwise.
109 static void CheckFloatOperands(MacroAssembler* masm,
110 Label* non_float,
111 Register scratch);
112
113 // Test if operands are numbers (smi or HeapNumber objects), and load
114 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
115 // either operand is not a number. Operands are in edx and eax.
116 // Leaves operands unchanged.
117 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
118 };
119
120
Generate(MacroAssembler * masm)121 void DoubleToIStub::Generate(MacroAssembler* masm) {
122 Register input_reg = this->source();
123 Register final_result_reg = this->destination();
124 DCHECK(is_truncating());
125
126 Label check_negative, process_64_bits, done, done_no_stash;
127
128 int double_offset = offset();
129
130 // Account for return address and saved regs if input is esp.
131 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
132
133 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
134 MemOperand exponent_operand(MemOperand(input_reg,
135 double_offset + kDoubleSize / 2));
136
137 Register scratch1;
138 {
139 Register scratch_candidates[3] = { ebx, edx, edi };
140 for (int i = 0; i < 3; i++) {
141 scratch1 = scratch_candidates[i];
142 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
143 }
144 }
145 // Since we must use ecx for shifts below, use some other register (eax)
146 // to calculate the result if ecx is the requested return register.
147 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
148 // Save ecx if it isn't the return register and therefore volatile, or if it
149 // is the return register, then save the temp register we use in its stead for
150 // the result.
151 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
152 __ push(scratch1);
153 __ push(save_reg);
154
155 bool stash_exponent_copy = !input_reg.is(esp);
156 __ mov(scratch1, mantissa_operand);
157 if (CpuFeatures::IsSupported(SSE3)) {
158 CpuFeatureScope scope(masm, SSE3);
159 // Load x87 register with heap number.
160 __ fld_d(mantissa_operand);
161 }
162 __ mov(ecx, exponent_operand);
163 if (stash_exponent_copy) __ push(ecx);
164
165 __ and_(ecx, HeapNumber::kExponentMask);
166 __ shr(ecx, HeapNumber::kExponentShift);
167 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
168 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
169 __ j(below, &process_64_bits);
170
171 // Result is entirely in lower 32-bits of mantissa
172 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
173 if (CpuFeatures::IsSupported(SSE3)) {
174 __ fstp(0);
175 }
176 __ sub(ecx, Immediate(delta));
177 __ xor_(result_reg, result_reg);
178 __ cmp(ecx, Immediate(31));
179 __ j(above, &done);
180 __ shl_cl(scratch1);
181 __ jmp(&check_negative);
182
183 __ bind(&process_64_bits);
184 if (CpuFeatures::IsSupported(SSE3)) {
185 CpuFeatureScope scope(masm, SSE3);
186 if (stash_exponent_copy) {
187 // Already a copy of the exponent on the stack, overwrite it.
188 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
189 __ sub(esp, Immediate(kDoubleSize / 2));
190 } else {
191 // Reserve space for 64 bit answer.
192 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
193 }
194 // Do conversion, which cannot fail because we checked the exponent.
195 __ fisttp_d(Operand(esp, 0));
196 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
197 __ add(esp, Immediate(kDoubleSize));
198 __ jmp(&done_no_stash);
199 } else {
200 // Result must be extracted from shifted 32-bit mantissa
201 __ sub(ecx, Immediate(delta));
202 __ neg(ecx);
203 if (stash_exponent_copy) {
204 __ mov(result_reg, MemOperand(esp, 0));
205 } else {
206 __ mov(result_reg, exponent_operand);
207 }
208 __ and_(result_reg,
209 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
210 __ add(result_reg,
211 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
212 __ shrd_cl(scratch1, result_reg);
213 __ shr_cl(result_reg);
214 __ test(ecx, Immediate(32));
215 __ cmov(not_equal, scratch1, result_reg);
216 }
217
218 // If the double was negative, negate the integer result.
219 __ bind(&check_negative);
220 __ mov(result_reg, scratch1);
221 __ neg(result_reg);
222 if (stash_exponent_copy) {
223 __ cmp(MemOperand(esp, 0), Immediate(0));
224 } else {
225 __ cmp(exponent_operand, Immediate(0));
226 }
227 __ cmov(greater, result_reg, scratch1);
228
229 // Restore registers
230 __ bind(&done);
231 if (stash_exponent_copy) {
232 __ add(esp, Immediate(kDoubleSize / 2));
233 }
234 __ bind(&done_no_stash);
235 if (!final_result_reg.is(result_reg)) {
236 DCHECK(final_result_reg.is(ecx));
237 __ mov(final_result_reg, result_reg);
238 }
239 __ pop(save_reg);
240 __ pop(scratch1);
241 __ ret(0);
242 }
243
244
LoadFloatOperand(MacroAssembler * masm,Register number)245 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
246 Register number) {
247 Label load_smi, done;
248
249 __ JumpIfSmi(number, &load_smi, Label::kNear);
250 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
251 __ jmp(&done, Label::kNear);
252
253 __ bind(&load_smi);
254 __ SmiUntag(number);
255 __ push(number);
256 __ fild_s(Operand(esp, 0));
257 __ pop(number);
258
259 __ bind(&done);
260 }
261
262
LoadSSE2Operands(MacroAssembler * masm,Label * not_numbers)263 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
264 Label* not_numbers) {
265 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
266 // Load operand in edx into xmm0, or branch to not_numbers.
267 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
268 Factory* factory = masm->isolate()->factory();
269 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
270 __ j(not_equal, not_numbers); // Argument in edx is not a number.
271 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
272 __ bind(&load_eax);
273 // Load operand in eax into xmm1, or branch to not_numbers.
274 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
275 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
276 __ j(equal, &load_float_eax, Label::kNear);
277 __ jmp(not_numbers); // Argument in eax is not a number.
278 __ bind(&load_smi_edx);
279 __ SmiUntag(edx); // Untag smi before converting to float.
280 __ Cvtsi2sd(xmm0, edx);
281 __ SmiTag(edx); // Retag smi for heap number overwriting test.
282 __ jmp(&load_eax);
283 __ bind(&load_smi_eax);
284 __ SmiUntag(eax); // Untag smi before converting to float.
285 __ Cvtsi2sd(xmm1, eax);
286 __ SmiTag(eax); // Retag smi for heap number overwriting test.
287 __ jmp(&done, Label::kNear);
288 __ bind(&load_float_eax);
289 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
290 __ bind(&done);
291 }
292
293
CheckFloatOperands(MacroAssembler * masm,Label * non_float,Register scratch)294 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
295 Label* non_float,
296 Register scratch) {
297 Label test_other, done;
298 // Test if both operands are floats or smi -> scratch=k_is_float;
299 // Otherwise scratch = k_not_float.
300 __ JumpIfSmi(edx, &test_other, Label::kNear);
301 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
302 Factory* factory = masm->isolate()->factory();
303 __ cmp(scratch, factory->heap_number_map());
304 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
305
306 __ bind(&test_other);
307 __ JumpIfSmi(eax, &done, Label::kNear);
308 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
309 __ cmp(scratch, factory->heap_number_map());
310 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
311
312 // Fall-through: Both operands are numbers.
313 __ bind(&done);
314 }
315
316
Generate(MacroAssembler * masm)317 void MathPowStub::Generate(MacroAssembler* masm) {
318 const Register exponent = MathPowTaggedDescriptor::exponent();
319 DCHECK(exponent.is(eax));
320 const Register scratch = ecx;
321 const XMMRegister double_result = xmm3;
322 const XMMRegister double_base = xmm2;
323 const XMMRegister double_exponent = xmm1;
324 const XMMRegister double_scratch = xmm4;
325
326 Label call_runtime, done, exponent_not_smi, int_exponent;
327
328 // Save 1 in double_result - we need this several times later on.
329 __ mov(scratch, Immediate(1));
330 __ Cvtsi2sd(double_result, scratch);
331
332 if (exponent_type() == TAGGED) {
333 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
334 __ SmiUntag(exponent);
335 __ jmp(&int_exponent);
336
337 __ bind(&exponent_not_smi);
338 __ movsd(double_exponent,
339 FieldOperand(exponent, HeapNumber::kValueOffset));
340 }
341
342 if (exponent_type() != INTEGER) {
343 Label fast_power, try_arithmetic_simplification;
344 __ DoubleToI(exponent, double_exponent, double_scratch,
345 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
346 &try_arithmetic_simplification,
347 &try_arithmetic_simplification);
348 __ jmp(&int_exponent);
349
350 __ bind(&try_arithmetic_simplification);
351 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
352 __ cvttsd2si(exponent, Operand(double_exponent));
353 __ cmp(exponent, Immediate(0x1));
354 __ j(overflow, &call_runtime);
355
356 // Using FPU instructions to calculate power.
357 Label fast_power_failed;
358 __ bind(&fast_power);
359 __ fnclex(); // Clear flags to catch exceptions later.
360 // Transfer (B)ase and (E)xponent onto the FPU register stack.
361 __ sub(esp, Immediate(kDoubleSize));
362 __ movsd(Operand(esp, 0), double_exponent);
363 __ fld_d(Operand(esp, 0)); // E
364 __ movsd(Operand(esp, 0), double_base);
365 __ fld_d(Operand(esp, 0)); // B, E
366
367 // Exponent is in st(1) and base is in st(0)
368 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
369 // FYL2X calculates st(1) * log2(st(0))
370 __ fyl2x(); // X
371 __ fld(0); // X, X
372 __ frndint(); // rnd(X), X
373 __ fsub(1); // rnd(X), X-rnd(X)
374 __ fxch(1); // X - rnd(X), rnd(X)
375 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
376 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
377 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
378 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
379 // FSCALE calculates st(0) * 2^st(1)
380 __ fscale(); // 2^X, rnd(X)
381 __ fstp(1); // 2^X
382 // Bail out to runtime in case of exceptions in the status word.
383 __ fnstsw_ax();
384 __ test_b(eax,
385 Immediate(0x5F)); // We check for all but precision exception.
386 __ j(not_zero, &fast_power_failed, Label::kNear);
387 __ fstp_d(Operand(esp, 0));
388 __ movsd(double_result, Operand(esp, 0));
389 __ add(esp, Immediate(kDoubleSize));
390 __ jmp(&done);
391
392 __ bind(&fast_power_failed);
393 __ fninit();
394 __ add(esp, Immediate(kDoubleSize));
395 __ jmp(&call_runtime);
396 }
397
398 // Calculate power with integer exponent.
399 __ bind(&int_exponent);
400 const XMMRegister double_scratch2 = double_exponent;
401 __ mov(scratch, exponent); // Back up exponent.
402 __ movsd(double_scratch, double_base); // Back up base.
403 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
404
405 // Get absolute value of exponent.
406 Label no_neg, while_true, while_false;
407 __ test(scratch, scratch);
408 __ j(positive, &no_neg, Label::kNear);
409 __ neg(scratch);
410 __ bind(&no_neg);
411
412 __ j(zero, &while_false, Label::kNear);
413 __ shr(scratch, 1);
414 // Above condition means CF==0 && ZF==0. This means that the
415 // bit that has been shifted out is 0 and the result is not 0.
416 __ j(above, &while_true, Label::kNear);
417 __ movsd(double_result, double_scratch);
418 __ j(zero, &while_false, Label::kNear);
419
420 __ bind(&while_true);
421 __ shr(scratch, 1);
422 __ mulsd(double_scratch, double_scratch);
423 __ j(above, &while_true, Label::kNear);
424 __ mulsd(double_result, double_scratch);
425 __ j(not_zero, &while_true);
426
427 __ bind(&while_false);
428 // scratch has the original value of the exponent - if the exponent is
429 // negative, return 1/result.
430 __ test(exponent, exponent);
431 __ j(positive, &done);
432 __ divsd(double_scratch2, double_result);
433 __ movsd(double_result, double_scratch2);
434 // Test whether result is zero. Bail out to check for subnormal result.
435 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
436 __ xorps(double_scratch2, double_scratch2);
437 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
438 // double_exponent aliased as double_scratch2 has already been overwritten
439 // and may not have contained the exponent value in the first place when the
440 // exponent is a smi. We reset it with exponent value before bailing out.
441 __ j(not_equal, &done);
442 __ Cvtsi2sd(double_exponent, exponent);
443
444 // Returning or bailing out.
445 __ bind(&call_runtime);
446 {
447 AllowExternalCallThatCantCauseGC scope(masm);
448 __ PrepareCallCFunction(4, scratch);
449 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
450 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
451 __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
452 4);
453 }
454 // Return value is in st(0) on ia32.
455 // Store it into the (fixed) result register.
456 __ sub(esp, Immediate(kDoubleSize));
457 __ fstp_d(Operand(esp, 0));
458 __ movsd(double_result, Operand(esp, 0));
459 __ add(esp, Immediate(kDoubleSize));
460
461 __ bind(&done);
462 __ ret(0);
463 }
464
Generate(MacroAssembler * masm)465 void RegExpExecStub::Generate(MacroAssembler* masm) {
466 // Just jump directly to runtime if native RegExp is not selected at compile
467 // time or if regexp entry in generated code is turned off runtime switch or
468 // at compilation.
469 #ifdef V8_INTERPRETED_REGEXP
470 __ TailCallRuntime(Runtime::kRegExpExec);
471 #else // V8_INTERPRETED_REGEXP
472
473 // Stack frame on entry.
474 // esp[0]: return address
475 // esp[4]: last_match_info (expected JSArray)
476 // esp[8]: previous index
477 // esp[12]: subject string
478 // esp[16]: JSRegExp object
479
480 static const int kLastMatchInfoOffset = 1 * kPointerSize;
481 static const int kPreviousIndexOffset = 2 * kPointerSize;
482 static const int kSubjectOffset = 3 * kPointerSize;
483 static const int kJSRegExpOffset = 4 * kPointerSize;
484
485 Label runtime;
486 Factory* factory = isolate()->factory();
487
488 // Ensure that a RegExp stack is allocated.
489 ExternalReference address_of_regexp_stack_memory_address =
490 ExternalReference::address_of_regexp_stack_memory_address(isolate());
491 ExternalReference address_of_regexp_stack_memory_size =
492 ExternalReference::address_of_regexp_stack_memory_size(isolate());
493 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
494 __ test(ebx, ebx);
495 __ j(zero, &runtime);
496
497 // Check that the first argument is a JSRegExp object.
498 __ mov(eax, Operand(esp, kJSRegExpOffset));
499 STATIC_ASSERT(kSmiTag == 0);
500 __ JumpIfSmi(eax, &runtime);
501 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
502 __ j(not_equal, &runtime);
503
504 // Check that the RegExp has been compiled (data contains a fixed array).
505 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
506 if (FLAG_debug_code) {
507 __ test(ecx, Immediate(kSmiTagMask));
508 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
509 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
510 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
511 }
512
513 // ecx: RegExp data (FixedArray)
514 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
515 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
516 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
517 __ j(not_equal, &runtime);
518
519 // ecx: RegExp data (FixedArray)
520 // Check that the number of captures fit in the static offsets vector buffer.
521 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
522 // Check (number_of_captures + 1) * 2 <= offsets vector size
523 // Or number_of_captures * 2 <= offsets vector size - 2
524 // Multiplying by 2 comes for free since edx is smi-tagged.
525 STATIC_ASSERT(kSmiTag == 0);
526 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
527 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
528 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
529 __ j(above, &runtime);
530
531 // Reset offset for possibly sliced string.
532 __ Move(edi, Immediate(0));
533 __ mov(eax, Operand(esp, kSubjectOffset));
534 __ JumpIfSmi(eax, &runtime);
535 __ mov(edx, eax); // Make a copy of the original subject string.
536
537 // eax: subject string
538 // edx: subject string
539 // ecx: RegExp data (FixedArray)
540 // Handle subject string according to its encoding and representation:
541 // (1) Sequential two byte? If yes, go to (9).
542 // (2) Sequential one byte? If yes, go to (5).
543 // (3) Sequential or cons? If not, go to (6).
544 // (4) Cons string. If the string is flat, replace subject with first string
545 // and go to (1). Otherwise bail out to runtime.
546 // (5) One byte sequential. Load regexp code for one byte.
547 // (E) Carry on.
548 /// [...]
549
550 // Deferred code at the end of the stub:
551 // (6) Long external string? If not, go to (10).
552 // (7) External string. Make it, offset-wise, look like a sequential string.
553 // (8) Is the external string one byte? If yes, go to (5).
554 // (9) Two byte sequential. Load regexp code for two byte. Go to (E).
555 // (10) Short external string or not a string? If yes, bail out to runtime.
556 // (11) Sliced or thin string. Replace subject with parent. Go to (1).
557
558 Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
559 external_string /* 7 */, check_underlying /* 1 */,
560 not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;
561
562 __ bind(&check_underlying);
563 // (1) Sequential two byte? If yes, go to (9).
564 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
565 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
566
567 __ and_(ebx, kIsNotStringMask |
568 kStringRepresentationMask |
569 kStringEncodingMask |
570 kShortExternalStringMask);
571 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
572 __ j(zero, &seq_two_byte_string); // Go to (9).
573
574 // (2) Sequential one byte? If yes, go to (5).
575 // Any other sequential string must be one byte.
576 __ and_(ebx, Immediate(kIsNotStringMask |
577 kStringRepresentationMask |
578 kShortExternalStringMask));
579 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5).
580
581 // (3) Sequential or cons? If not, go to (6).
582 // We check whether the subject string is a cons, since sequential strings
583 // have already been covered.
584 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
585 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
586 STATIC_ASSERT(kThinStringTag > kExternalStringTag);
587 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
588 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
589 __ cmp(ebx, Immediate(kExternalStringTag));
590 __ j(greater_equal, ¬_seq_nor_cons); // Go to (6).
591
592 // (4) Cons string. Check that it's flat.
593 // Replace subject with first string and reload instance type.
594 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
595 __ j(not_equal, &runtime);
596 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
597 __ jmp(&check_underlying);
598
599 // eax: sequential subject string (or look-alike, external string)
600 // edx: original subject string
601 // ecx: RegExp data (FixedArray)
602 // (5) One byte sequential. Load regexp code for one byte.
603 __ bind(&seq_one_byte_string);
604 // Load previous index and check range before edx is overwritten. We have
605 // to use edx instead of eax here because it might have been only made to
606 // look like a sequential string when it actually is an external string.
607 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
608 __ JumpIfNotSmi(ebx, &runtime);
609 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
610 __ j(above_equal, &runtime);
611 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
612 __ Move(ecx, Immediate(1)); // Type is one byte.
613
614 // (E) Carry on. String handling is done.
615 __ bind(&check_code);
616 // edx: irregexp code
617 // Check that the irregexp code has been generated for the actual string
618 // encoding. If it has, the field contains a code object otherwise it contains
619 // a smi (code flushing support).
620 __ JumpIfSmi(edx, &runtime);
621
622 // eax: subject string
623 // ebx: previous index (smi)
624 // edx: code
625 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
626 // All checks done. Now push arguments for native regexp code.
627 Counters* counters = isolate()->counters();
628 __ IncrementCounter(counters->regexp_entry_native(), 1);
629
630 // Isolates: note we add an additional parameter here (isolate pointer).
631 static const int kRegExpExecuteArguments = 9;
632 __ EnterApiExitFrame(kRegExpExecuteArguments);
633
634 // Argument 9: Pass current isolate address.
635 __ mov(Operand(esp, 8 * kPointerSize),
636 Immediate(ExternalReference::isolate_address(isolate())));
637
638 // Argument 8: Indicate that this is a direct call from JavaScript.
639 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
640
641 // Argument 7: Start (high end) of backtracking stack memory area.
642 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
643 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
644 __ mov(Operand(esp, 6 * kPointerSize), esi);
645
646 // Argument 6: Set the number of capture registers to zero to force global
647 // regexps to behave as non-global. This does not affect non-global regexps.
648 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
649
650 // Argument 5: static offsets vector buffer.
651 __ mov(Operand(esp, 4 * kPointerSize),
652 Immediate(ExternalReference::address_of_static_offsets_vector(
653 isolate())));
654
655 // Argument 2: Previous index.
656 __ SmiUntag(ebx);
657 __ mov(Operand(esp, 1 * kPointerSize), ebx);
658
659 // Argument 1: Original subject string.
660 // The original subject is in the previous stack frame. Therefore we have to
661 // use ebp, which points exactly to one pointer size below the previous esp.
662 // (Because creating a new stack frame pushes the previous ebp onto the stack
663 // and thereby moves up esp by one kPointerSize.)
664 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
665 __ mov(Operand(esp, 0 * kPointerSize), esi);
666
667 // esi: original subject string
668 // eax: underlying subject string
669 // ebx: previous index
670 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
671 // edx: code
672 // Argument 4: End of string data
673 // Argument 3: Start of string data
674 // Prepare start and end index of the input.
675 // Load the length from the original sliced string if that is the case.
676 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
677 __ add(esi, edi); // Calculate input end wrt offset.
678 __ SmiUntag(edi);
679 __ add(ebx, edi); // Calculate input start wrt offset.
680
681 // ebx: start index of the input string
682 // esi: end index of the input string
683 Label setup_two_byte, setup_rest;
684 __ test(ecx, ecx);
685 __ j(zero, &setup_two_byte, Label::kNear);
686 __ SmiUntag(esi);
687 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
688 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
689 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
690 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
691 __ jmp(&setup_rest, Label::kNear);
692
693 __ bind(&setup_two_byte);
694 STATIC_ASSERT(kSmiTag == 0);
695 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
696 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
697 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
698 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
699 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
700
701 __ bind(&setup_rest);
702
703 // Locate the code entry and call it.
704 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
705 __ call(edx);
706
707 // Drop arguments and come back to JS mode.
708 __ LeaveApiExitFrame(true);
709
710 // Check the result.
711 Label success;
712 __ cmp(eax, 1);
713 // We expect exactly one result since we force the called regexp to behave
714 // as non-global.
715 __ j(equal, &success);
716 Label failure;
717 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
718 __ j(equal, &failure);
719 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
720 // If not exception it can only be retry. Handle that in the runtime system.
721 __ j(not_equal, &runtime);
722 // Result must now be exception. If there is no pending exception already a
723 // stack overflow (on the backtrack stack) was detected in RegExp code but
724 // haven't created the exception yet. Handle that in the runtime system.
725 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
726 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
727 isolate());
728 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
729 __ mov(eax, Operand::StaticVariable(pending_exception));
730 __ cmp(edx, eax);
731 __ j(equal, &runtime);
732
733 // For exception, throw the exception again.
734 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
735
736 __ bind(&failure);
737 // For failure to match, return null.
738 __ mov(eax, factory->null_value());
739 __ ret(4 * kPointerSize);
740
741 // Load RegExp data.
742 __ bind(&success);
743 __ mov(eax, Operand(esp, kJSRegExpOffset));
744 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
745 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
746 // Calculate number of capture registers (number_of_captures + 1) * 2.
747 STATIC_ASSERT(kSmiTag == 0);
748 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
749 __ add(edx, Immediate(2)); // edx was a smi.
750
751 // edx: Number of capture registers
752 // Check that the last match info is a FixedArray.
753 __ mov(ebx, Operand(esp, kLastMatchInfoOffset));
754 __ JumpIfSmi(ebx, &runtime);
755 // Check that the object has fast elements.
756 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
757 __ cmp(eax, factory->fixed_array_map());
758 __ j(not_equal, &runtime);
759 // Check that the last match info has space for the capture registers and the
760 // additional information.
761 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
762 __ SmiUntag(eax);
763 __ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead));
764 __ cmp(edx, eax);
765 __ j(greater, &runtime);
766
767 // ebx: last_match_info (FixedArray)
768 // edx: number of capture registers
769 // Store the capture count.
770 __ SmiTag(edx); // Number of capture registers to smi.
771 __ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx);
772 __ SmiUntag(edx); // Number of capture registers back from smi.
773 // Store last subject and last input.
774 __ mov(eax, Operand(esp, kSubjectOffset));
775 __ mov(ecx, eax);
776 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax);
777 __ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi,
778 kDontSaveFPRegs);
779 __ mov(eax, ecx);
780 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax);
781 __ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi,
782 kDontSaveFPRegs);
783
784 // Get the static offsets vector filled by the native regexp code.
785 ExternalReference address_of_static_offsets_vector =
786 ExternalReference::address_of_static_offsets_vector(isolate());
787 __ mov(ecx, Immediate(address_of_static_offsets_vector));
788
789 // ebx: last_match_info (FixedArray)
790 // ecx: offsets vector
791 // edx: number of capture registers
792 Label next_capture, done;
793 // Capture register counter starts from number of capture registers and
794 // counts down until wrapping after zero.
795 __ bind(&next_capture);
796 __ sub(edx, Immediate(1));
797 __ j(negative, &done, Label::kNear);
798 // Read the value from the static offsets vector buffer.
799 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
800 __ SmiTag(edi);
801 // Store the smi value in the last match info.
802 __ mov(FieldOperand(ebx, edx, times_pointer_size,
803 RegExpMatchInfo::kFirstCaptureOffset),
804 edi);
805 __ jmp(&next_capture);
806 __ bind(&done);
807
808 // Return last match info.
809 __ mov(eax, ebx);
810 __ ret(4 * kPointerSize);
811
812 // Do the runtime call to execute the regexp.
813 __ bind(&runtime);
814 __ TailCallRuntime(Runtime::kRegExpExec);
815
816 // Deferred code for string handling.
817 // (6) Long external string? If not, go to (10).
818 __ bind(¬_seq_nor_cons);
819 // Compare flags are still set from (3).
820 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
821
822 // (7) External string. Short external strings have been ruled out.
823 __ bind(&external_string);
824 // Reload instance type.
825 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
826 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
827 if (FLAG_debug_code) {
828 // Assert that we do not have a cons or slice (indirect strings) here.
829 // Sequential strings have already been ruled out.
830 __ test_b(ebx, Immediate(kIsIndirectStringMask));
831 __ Assert(zero, kExternalStringExpectedButNotFound);
832 }
833 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
834 // Move the pointer so that offset-wise, it looks like a sequential string.
835 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
836 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
837 STATIC_ASSERT(kTwoByteStringTag == 0);
838 // (8) Is the external string one byte? If yes, go to (5).
839 __ test_b(ebx, Immediate(kStringEncodingMask));
840 __ j(not_zero, &seq_one_byte_string); // Go to (5).
841
842 // eax: sequential subject string (or look-alike, external string)
843 // edx: original subject string
844 // ecx: RegExp data (FixedArray)
845 // (9) Two byte sequential. Load regexp code for two byte. Go to (E).
846 __ bind(&seq_two_byte_string);
847 // Load previous index and check range before edx is overwritten. We have
848 // to use edx instead of eax here because it might have been only made to
849 // look like a sequential string when it actually is an external string.
850 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
851 __ JumpIfNotSmi(ebx, &runtime);
852 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
853 __ j(above_equal, &runtime);
854 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
855 __ Move(ecx, Immediate(0)); // Type is two byte.
856 __ jmp(&check_code); // Go to (E).
857
858 // (10) Not a string or a short external string? If yes, bail out to runtime.
859 __ bind(¬_long_external);
860 // Catch non-string subject or short external string.
861 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
862 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
863 __ j(not_zero, &runtime);
864
865 // (11) Sliced or thin string. Replace subject with parent. Go to (1).
866 Label thin_string;
867 __ cmp(ebx, Immediate(kThinStringTag));
868 __ j(equal, &thin_string, Label::kNear);
869 // Load offset into edi and replace subject string with parent.
870 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
871 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
872 __ jmp(&check_underlying); // Go to (1).
873
874 __ bind(&thin_string);
875 __ mov(eax, FieldOperand(eax, ThinString::kActualOffset));
876 __ jmp(&check_underlying); // Go to (1).
877 #endif // V8_INTERPRETED_REGEXP
878 }
879
880
NegativeComparisonResult(Condition cc)881 static int NegativeComparisonResult(Condition cc) {
882 DCHECK(cc != equal);
883 DCHECK((cc == less) || (cc == less_equal)
884 || (cc == greater) || (cc == greater_equal));
885 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
886 }
887
888
CheckInputType(MacroAssembler * masm,Register input,CompareICState::State expected,Label * fail)889 static void CheckInputType(MacroAssembler* masm, Register input,
890 CompareICState::State expected, Label* fail) {
891 Label ok;
892 if (expected == CompareICState::SMI) {
893 __ JumpIfNotSmi(input, fail);
894 } else if (expected == CompareICState::NUMBER) {
895 __ JumpIfSmi(input, &ok);
896 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
897 Immediate(masm->isolate()->factory()->heap_number_map()));
898 __ j(not_equal, fail);
899 }
900 // We could be strict about internalized/non-internalized here, but as long as
901 // hydrogen doesn't care, the stub doesn't have to care either.
902 __ bind(&ok);
903 }
904
905
BranchIfNotInternalizedString(MacroAssembler * masm,Label * label,Register object,Register scratch)906 static void BranchIfNotInternalizedString(MacroAssembler* masm,
907 Label* label,
908 Register object,
909 Register scratch) {
910 __ JumpIfSmi(object, label);
911 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
912 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
913 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
914 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
915 __ j(not_zero, label);
916 }
917
918
GenerateGeneric(MacroAssembler * masm)919 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
920 Label runtime_call, check_unequal_objects;
921 Condition cc = GetCondition();
922
923 Label miss;
924 CheckInputType(masm, edx, left(), &miss);
925 CheckInputType(masm, eax, right(), &miss);
926
927 // Compare two smis.
928 Label non_smi, smi_done;
929 __ mov(ecx, edx);
930 __ or_(ecx, eax);
931 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
932 __ sub(edx, eax); // Return on the result of the subtraction.
933 __ j(no_overflow, &smi_done, Label::kNear);
934 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
935 __ bind(&smi_done);
936 __ mov(eax, edx);
937 __ ret(0);
938 __ bind(&non_smi);
939
940 // NOTICE! This code is only reached after a smi-fast-case check, so
941 // it is certain that at least one operand isn't a smi.
942
943 // Identical objects can be compared fast, but there are some tricky cases
944 // for NaN and undefined.
945 Label generic_heap_number_comparison;
946 {
947 Label not_identical;
948 __ cmp(eax, edx);
949 __ j(not_equal, ¬_identical);
950
951 if (cc != equal) {
952 // Check for undefined. undefined OP undefined is false even though
953 // undefined == undefined.
954 __ cmp(edx, isolate()->factory()->undefined_value());
955 Label check_for_nan;
956 __ j(not_equal, &check_for_nan, Label::kNear);
957 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
958 __ ret(0);
959 __ bind(&check_for_nan);
960 }
961
962 // Test for NaN. Compare heap numbers in a general way,
963 // to handle NaNs correctly.
964 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
965 Immediate(isolate()->factory()->heap_number_map()));
966 __ j(equal, &generic_heap_number_comparison, Label::kNear);
967 if (cc != equal) {
968 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
969 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
970 // Call runtime on identical JSObjects. Otherwise return equal.
971 __ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE));
972 __ j(above_equal, &runtime_call, Label::kFar);
973 // Call runtime on identical symbols since we need to throw a TypeError.
974 __ cmpb(ecx, Immediate(SYMBOL_TYPE));
975 __ j(equal, &runtime_call, Label::kFar);
976 }
977 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
978 __ ret(0);
979
980
981 __ bind(¬_identical);
982 }
983
984 // Strict equality can quickly decide whether objects are equal.
985 // Non-strict object equality is slower, so it is handled later in the stub.
986 if (cc == equal && strict()) {
987 Label slow; // Fallthrough label.
988 Label not_smis;
989 // If we're doing a strict equality comparison, we don't have to do
990 // type conversion, so we generate code to do fast comparison for objects
991 // and oddballs. Non-smi numbers and strings still go through the usual
992 // slow-case code.
993 // If either is a Smi (we know that not both are), then they can only
994 // be equal if the other is a HeapNumber. If so, use the slow case.
995 STATIC_ASSERT(kSmiTag == 0);
996 DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
997 __ mov(ecx, Immediate(kSmiTagMask));
998 __ and_(ecx, eax);
999 __ test(ecx, edx);
1000 __ j(not_zero, ¬_smis, Label::kNear);
1001 // One operand is a smi.
1002
1003 // Check whether the non-smi is a heap number.
1004 STATIC_ASSERT(kSmiTagMask == 1);
1005 // ecx still holds eax & kSmiTag, which is either zero or one.
1006 __ sub(ecx, Immediate(0x01));
1007 __ mov(ebx, edx);
1008 __ xor_(ebx, eax);
1009 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1010 __ xor_(ebx, eax);
1011 // if eax was smi, ebx is now edx, else eax.
1012
1013 // Check if the non-smi operand is a heap number.
1014 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1015 Immediate(isolate()->factory()->heap_number_map()));
1016 // If heap number, handle it in the slow case.
1017 __ j(equal, &slow, Label::kNear);
1018 // Return non-equal (ebx is not zero)
1019 __ mov(eax, ebx);
1020 __ ret(0);
1021
1022 __ bind(¬_smis);
1023 // If either operand is a JSObject or an oddball value, then they are not
1024 // equal since their pointers are different
1025 // There is no test for undetectability in strict equality.
1026
1027 // Get the type of the first operand.
1028 // If the first object is a JS object, we have done pointer comparison.
1029 Label first_non_object;
1030 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
1031 __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
1032 __ j(below, &first_non_object, Label::kNear);
1033
1034 // Return non-zero (eax is not zero)
1035 Label return_not_equal;
1036 STATIC_ASSERT(kHeapObjectTag != 0);
1037 __ bind(&return_not_equal);
1038 __ ret(0);
1039
1040 __ bind(&first_non_object);
1041 // Check for oddballs: true, false, null, undefined.
1042 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1043 __ j(equal, &return_not_equal);
1044
1045 __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
1046 __ j(above_equal, &return_not_equal);
1047
1048 // Check for oddballs: true, false, null, undefined.
1049 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1050 __ j(equal, &return_not_equal);
1051
1052 // Fall through to the general case.
1053 __ bind(&slow);
1054 }
1055
1056 // Generate the number comparison code.
1057 Label non_number_comparison;
1058 Label unordered;
1059 __ bind(&generic_heap_number_comparison);
1060
1061 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
1062 __ ucomisd(xmm0, xmm1);
1063 // Don't base result on EFLAGS when a NaN is involved.
1064 __ j(parity_even, &unordered, Label::kNear);
1065
1066 __ mov(eax, 0); // equal
1067 __ mov(ecx, Immediate(Smi::FromInt(1)));
1068 __ cmov(above, eax, ecx);
1069 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1070 __ cmov(below, eax, ecx);
1071 __ ret(0);
1072
1073 // If one of the numbers was NaN, then the result is always false.
1074 // The cc is never not-equal.
1075 __ bind(&unordered);
1076 DCHECK(cc != not_equal);
1077 if (cc == less || cc == less_equal) {
1078 __ mov(eax, Immediate(Smi::FromInt(1)));
1079 } else {
1080 __ mov(eax, Immediate(Smi::FromInt(-1)));
1081 }
1082 __ ret(0);
1083
1084 // The number comparison code did not provide a valid result.
1085 __ bind(&non_number_comparison);
1086
1087 // Fast negative check for internalized-to-internalized equality.
1088 Label check_for_strings;
1089 if (cc == equal) {
1090 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1091 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1092
1093 // We've already checked for object identity, so if both operands
1094 // are internalized they aren't equal. Register eax already holds a
1095 // non-zero value, which indicates not equal, so just return.
1096 __ ret(0);
1097 }
1098
1099 __ bind(&check_for_strings);
1100
1101 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1102 &check_unequal_objects);
1103
1104 // Inline comparison of one-byte strings.
1105 if (cc == equal) {
1106 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1107 } else {
1108 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1109 edi);
1110 }
1111 #ifdef DEBUG
1112 __ Abort(kUnexpectedFallThroughFromStringComparison);
1113 #endif
1114
1115 __ bind(&check_unequal_objects);
1116 if (cc == equal && !strict()) {
1117 // Non-strict equality. Objects are unequal if
1118 // they are both JSObjects and not undetectable,
1119 // and their pointers are different.
1120 Label return_equal, return_unequal, undetectable;
1121 // At most one is a smi, so we can test for smi by adding the two.
1122 // A smi plus a heap object has the low bit set, a heap object plus
1123 // a heap object has the low bit clear.
1124 STATIC_ASSERT(kSmiTag == 0);
1125 STATIC_ASSERT(kSmiTagMask == 1);
1126 __ lea(ecx, Operand(eax, edx, times_1, 0));
1127 __ test(ecx, Immediate(kSmiTagMask));
1128 __ j(not_zero, &runtime_call);
1129
1130 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1131 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
1132
1133 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1134 Immediate(1 << Map::kIsUndetectable));
1135 __ j(not_zero, &undetectable, Label::kNear);
1136 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1137 Immediate(1 << Map::kIsUndetectable));
1138 __ j(not_zero, &return_unequal, Label::kNear);
1139
1140 __ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE);
1141 __ j(below, &runtime_call, Label::kNear);
1142 __ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE);
1143 __ j(below, &runtime_call, Label::kNear);
1144
1145 __ bind(&return_unequal);
1146 // Return non-equal by returning the non-zero object pointer in eax.
1147 __ ret(0); // eax, edx were pushed
1148
1149 __ bind(&undetectable);
1150 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1151 Immediate(1 << Map::kIsUndetectable));
1152 __ j(zero, &return_unequal, Label::kNear);
1153
1154 // If both sides are JSReceivers, then the result is false according to
1155 // the HTML specification, which says that only comparisons with null or
1156 // undefined are affected by special casing for document.all.
1157 __ CmpInstanceType(ebx, ODDBALL_TYPE);
1158 __ j(zero, &return_equal, Label::kNear);
1159 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1160 __ j(not_zero, &return_unequal, Label::kNear);
1161
1162 __ bind(&return_equal);
1163 __ Move(eax, Immediate(EQUAL));
1164 __ ret(0); // eax, edx were pushed
1165 }
1166 __ bind(&runtime_call);
1167
1168 if (cc == equal) {
1169 {
1170 FrameScope scope(masm, StackFrame::INTERNAL);
1171 __ Push(esi);
1172 __ Call(strict() ? isolate()->builtins()->StrictEqual()
1173 : isolate()->builtins()->Equal(),
1174 RelocInfo::CODE_TARGET);
1175 __ Pop(esi);
1176 }
1177 // Turn true into 0 and false into some non-zero value.
1178 STATIC_ASSERT(EQUAL == 0);
1179 __ sub(eax, Immediate(isolate()->factory()->true_value()));
1180 __ Ret();
1181 } else {
1182 // Push arguments below the return address.
1183 __ pop(ecx);
1184 __ push(edx);
1185 __ push(eax);
1186 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1187 __ push(ecx);
1188 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1189 // tagged as a small integer.
1190 __ TailCallRuntime(Runtime::kCompare);
1191 }
1192
1193 __ bind(&miss);
1194 GenerateMiss(masm);
1195 }
1196
1197
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1198 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1199 // eax : number of arguments to the construct function
1200 // ebx : feedback vector
1201 // edx : slot in feedback vector (Smi)
1202 // edi : the function to call
1203
1204 {
1205 FrameScope scope(masm, StackFrame::INTERNAL);
1206
1207 // Number-of-arguments register must be smi-tagged to call out.
1208 __ SmiTag(eax);
1209 __ push(eax);
1210 __ push(edi);
1211 __ push(edx);
1212 __ push(ebx);
1213 __ push(esi);
1214
1215 __ CallStub(stub);
1216
1217 __ pop(esi);
1218 __ pop(ebx);
1219 __ pop(edx);
1220 __ pop(edi);
1221 __ pop(eax);
1222 __ SmiUntag(eax);
1223 }
1224 }
1225
1226
GenerateRecordCallTarget(MacroAssembler * masm)1227 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1228 // Cache the called function in a feedback vector slot. Cache states
1229 // are uninitialized, monomorphic (indicated by a JSFunction), and
1230 // megamorphic.
1231 // eax : number of arguments to the construct function
1232 // ebx : feedback vector
1233 // edx : slot in feedback vector (Smi)
1234 // edi : the function to call
1235 Isolate* isolate = masm->isolate();
1236 Label initialize, done, miss, megamorphic, not_array_function;
1237
1238 // Load the cache state into ecx.
1239 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1240 FixedArray::kHeaderSize));
1241
1242 // A monomorphic cache hit or an already megamorphic state: invoke the
1243 // function without changing the state.
1244 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1245 // at this position in a symbol (see static asserts in feedback-vector.h).
1246 Label check_allocation_site;
1247 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1248 __ j(equal, &done, Label::kFar);
1249 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1250 __ j(equal, &done, Label::kFar);
1251 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1252 Heap::kWeakCellMapRootIndex);
1253 __ j(not_equal, &check_allocation_site);
1254
1255 // If the weak cell is cleared, we have a new chance to become monomorphic.
1256 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1257 __ jmp(&megamorphic);
1258
1259 __ bind(&check_allocation_site);
1260 // If we came here, we need to see if we are the array function.
1261 // If we didn't have a matching function, and we didn't find the megamorph
1262 // sentinel, then we have in the slot either some other function or an
1263 // AllocationSite.
1264 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1265 __ j(not_equal, &miss);
1266
1267 // Make sure the function is the Array() function
1268 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1269 __ cmp(edi, ecx);
1270 __ j(not_equal, &megamorphic);
1271 __ jmp(&done, Label::kFar);
1272
1273 __ bind(&miss);
1274
1275 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1276 // megamorphic.
1277 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
1278 __ j(equal, &initialize);
1279 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1280 // write-barrier is needed.
1281 __ bind(&megamorphic);
1282 __ mov(
1283 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1284 Immediate(FeedbackVector::MegamorphicSentinel(isolate)));
1285 __ jmp(&done, Label::kFar);
1286
1287 // An uninitialized cache is patched with the function or sentinel to
1288 // indicate the ElementsKind if function is the Array constructor.
1289 __ bind(&initialize);
1290 // Make sure the function is the Array() function
1291 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1292 __ cmp(edi, ecx);
1293 __ j(not_equal, ¬_array_function);
1294
1295 // The target function is the Array constructor,
1296 // Create an AllocationSite if we don't already have it, store it in the
1297 // slot.
1298 CreateAllocationSiteStub create_stub(isolate);
1299 CallStubInRecordCallTarget(masm, &create_stub);
1300 __ jmp(&done);
1301
1302 __ bind(¬_array_function);
1303 CreateWeakCellStub weak_cell_stub(isolate);
1304 CallStubInRecordCallTarget(masm, &weak_cell_stub);
1305
1306 __ bind(&done);
1307 // Increment the call count for all function calls.
1308 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
1309 FixedArray::kHeaderSize + kPointerSize),
1310 Immediate(Smi::FromInt(1)));
1311 }
1312
1313
Generate(MacroAssembler * masm)1314 void CallConstructStub::Generate(MacroAssembler* masm) {
1315 // eax : number of arguments
1316 // ebx : feedback vector
1317 // edx : slot in feedback vector (Smi, for RecordCallTarget)
1318 // edi : constructor function
1319
1320 Label non_function;
1321 // Check that function is not a smi.
1322 __ JumpIfSmi(edi, &non_function);
1323 // Check that function is a JSFunction.
1324 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1325 __ j(not_equal, &non_function);
1326
1327 GenerateRecordCallTarget(masm);
1328
1329 Label feedback_register_initialized;
1330 // Put the AllocationSite from the feedback vector into ebx, or undefined.
1331 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1332 FixedArray::kHeaderSize));
1333 Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
1334 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
1335 __ j(equal, &feedback_register_initialized);
1336 __ mov(ebx, isolate()->factory()->undefined_value());
1337 __ bind(&feedback_register_initialized);
1338
1339 __ AssertUndefinedOrAllocationSite(ebx);
1340
1341 // Pass new target to construct stub.
1342 __ mov(edx, edi);
1343
1344 // Tail call to the function-specific construct stub (still in the caller
1345 // context at this point).
1346 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1347 __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
1348 __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
1349 __ jmp(ecx);
1350
1351 __ bind(&non_function);
1352 __ mov(edx, edi);
1353 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1354 }
1355
NeedsImmovableCode()1356 bool CEntryStub::NeedsImmovableCode() {
1357 return false;
1358 }
1359
1360
GenerateStubsAheadOfTime(Isolate * isolate)1361 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1362 CEntryStub::GenerateAheadOfTime(isolate);
1363 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1364 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1365 // It is important that the store buffer overflow stubs are generated first.
1366 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
1367 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1368 CreateWeakCellStub::GenerateAheadOfTime(isolate);
1369 BinaryOpICStub::GenerateAheadOfTime(isolate);
1370 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1371 StoreFastElementStub::GenerateAheadOfTime(isolate);
1372 }
1373
1374
GenerateFPStubs(Isolate * isolate)1375 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1376 // Generate if not already in cache.
1377 CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
1378 }
1379
1380
GenerateAheadOfTime(Isolate * isolate)1381 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1382 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1383 stub.GetCode();
1384 }
1385
1386
Generate(MacroAssembler * masm)1387 void CEntryStub::Generate(MacroAssembler* masm) {
1388 // eax: number of arguments including receiver
1389 // ebx: pointer to C function (C callee-saved)
1390 // ebp: frame pointer (restored after C call)
1391 // esp: stack pointer (restored after C call)
1392 // esi: current context (C callee-saved)
1393 // edi: JS function of the caller (C callee-saved)
1394 //
1395 // If argv_in_register():
1396 // ecx: pointer to the first argument
1397
1398 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1399
1400 // Reserve space on the stack for the three arguments passed to the call. If
1401 // result size is greater than can be returned in registers, also reserve
1402 // space for the hidden argument for the result location, and space for the
1403 // result itself.
1404 int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size();
1405
1406 // Enter the exit frame that transitions from JavaScript to C++.
1407 if (argv_in_register()) {
1408 DCHECK(!save_doubles());
1409 DCHECK(!is_builtin_exit());
1410 __ EnterApiExitFrame(arg_stack_space);
1411
1412 // Move argc and argv into the correct registers.
1413 __ mov(esi, ecx);
1414 __ mov(edi, eax);
1415 } else {
1416 __ EnterExitFrame(
1417 arg_stack_space, save_doubles(),
1418 is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
1419 }
1420
1421 // ebx: pointer to C function (C callee-saved)
1422 // ebp: frame pointer (restored after C call)
1423 // esp: stack pointer (restored after C call)
1424 // edi: number of arguments including receiver (C callee-saved)
1425 // esi: pointer to the first argument (C callee-saved)
1426
1427 // Result returned in eax, or eax+edx if result size is 2.
1428
1429 // Check stack alignment.
1430 if (FLAG_debug_code) {
1431 __ CheckStackAlignment();
1432 }
1433 // Call C function.
1434 if (result_size() <= 2) {
1435 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
1436 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
1437 __ mov(Operand(esp, 2 * kPointerSize),
1438 Immediate(ExternalReference::isolate_address(isolate())));
1439 } else {
1440 DCHECK_EQ(3, result_size());
1441 // Pass a pointer to the result location as the first argument.
1442 __ lea(eax, Operand(esp, 4 * kPointerSize));
1443 __ mov(Operand(esp, 0 * kPointerSize), eax);
1444 __ mov(Operand(esp, 1 * kPointerSize), edi); // argc.
1445 __ mov(Operand(esp, 2 * kPointerSize), esi); // argv.
1446 __ mov(Operand(esp, 3 * kPointerSize),
1447 Immediate(ExternalReference::isolate_address(isolate())));
1448 }
1449 __ call(ebx);
1450
1451 if (result_size() > 2) {
1452 DCHECK_EQ(3, result_size());
1453 #ifndef _WIN32
1454 // Restore the "hidden" argument on the stack which was popped by caller.
1455 __ sub(esp, Immediate(kPointerSize));
1456 #endif
1457 // Read result values stored on stack. Result is stored above the arguments.
1458 __ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize));
1459 __ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize));
1460 __ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize));
1461 }
1462 // Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers!
1463
1464 // Check result for exception sentinel.
1465 Label exception_returned;
1466 __ cmp(eax, isolate()->factory()->exception());
1467 __ j(equal, &exception_returned);
1468
1469 // Check that there is no pending exception, otherwise we
1470 // should have returned the exception sentinel.
1471 if (FLAG_debug_code) {
1472 __ push(edx);
1473 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1474 Label okay;
1475 ExternalReference pending_exception_address(
1476 Isolate::kPendingExceptionAddress, isolate());
1477 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
1478 // Cannot use check here as it attempts to generate call into runtime.
1479 __ j(equal, &okay, Label::kNear);
1480 __ int3();
1481 __ bind(&okay);
1482 __ pop(edx);
1483 }
1484
1485 // Exit the JavaScript to C++ exit frame.
1486 __ LeaveExitFrame(save_doubles(), !argv_in_register());
1487 __ ret(0);
1488
1489 // Handling of exception.
1490 __ bind(&exception_returned);
1491
1492 ExternalReference pending_handler_context_address(
1493 Isolate::kPendingHandlerContextAddress, isolate());
1494 ExternalReference pending_handler_code_address(
1495 Isolate::kPendingHandlerCodeAddress, isolate());
1496 ExternalReference pending_handler_offset_address(
1497 Isolate::kPendingHandlerOffsetAddress, isolate());
1498 ExternalReference pending_handler_fp_address(
1499 Isolate::kPendingHandlerFPAddress, isolate());
1500 ExternalReference pending_handler_sp_address(
1501 Isolate::kPendingHandlerSPAddress, isolate());
1502
1503 // Ask the runtime for help to determine the handler. This will set eax to
1504 // contain the current pending exception, don't clobber it.
1505 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1506 isolate());
1507 {
1508 FrameScope scope(masm, StackFrame::MANUAL);
1509 __ PrepareCallCFunction(3, eax);
1510 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
1511 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
1512 __ mov(Operand(esp, 2 * kPointerSize),
1513 Immediate(ExternalReference::isolate_address(isolate())));
1514 __ CallCFunction(find_handler, 3);
1515 }
1516
1517 // Retrieve the handler context, SP and FP.
1518 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
1519 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
1520 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
1521
1522 // If the handler is a JS frame, restore the context to the frame. Note that
1523 // the context will be set to (esi == 0) for non-JS frames.
1524 Label skip;
1525 __ test(esi, esi);
1526 __ j(zero, &skip, Label::kNear);
1527 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1528 __ bind(&skip);
1529
1530 // Compute the handler entry address and jump to it.
1531 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
1532 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
1533 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
1534 __ jmp(edi);
1535 }
1536
1537
Generate(MacroAssembler * masm)1538 void JSEntryStub::Generate(MacroAssembler* masm) {
1539 Label invoke, handler_entry, exit;
1540 Label not_outermost_js, not_outermost_js_2;
1541
1542 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1543
1544 // Set up frame.
1545 __ push(ebp);
1546 __ mov(ebp, esp);
1547
1548 // Push marker in two places.
1549 StackFrame::Type marker = type();
1550 __ push(Immediate(StackFrame::TypeToMarker(marker))); // marker
1551 ExternalReference context_address(Isolate::kContextAddress, isolate());
1552 __ push(Operand::StaticVariable(context_address)); // context
1553 // Save callee-saved registers (C calling conventions).
1554 __ push(edi);
1555 __ push(esi);
1556 __ push(ebx);
1557
1558 // Save copies of the top frame descriptor on the stack.
1559 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
1560 __ push(Operand::StaticVariable(c_entry_fp));
1561
1562 // If this is the outermost JS call, set js_entry_sp value.
1563 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1564 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
1565 __ j(not_equal, ¬_outermost_js, Label::kNear);
1566 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
1567 __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
1568 __ jmp(&invoke, Label::kNear);
1569 __ bind(¬_outermost_js);
1570 __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
1571
1572 // Jump to a faked try block that does the invoke, with a faked catch
1573 // block that sets the pending exception.
1574 __ jmp(&invoke);
1575 __ bind(&handler_entry);
1576 handler_offset_ = handler_entry.pos();
1577 // Caught exception: Store result (exception) in the pending exception
1578 // field in the JSEnv and return a failure sentinel.
1579 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1580 isolate());
1581 __ mov(Operand::StaticVariable(pending_exception), eax);
1582 __ mov(eax, Immediate(isolate()->factory()->exception()));
1583 __ jmp(&exit);
1584
1585 // Invoke: Link this frame into the handler chain.
1586 __ bind(&invoke);
1587 __ PushStackHandler();
1588
1589 // Fake a receiver (NULL).
1590 __ push(Immediate(0)); // receiver
1591
1592 // Invoke the function by calling through JS entry trampoline builtin and
1593 // pop the faked function when we return. Notice that we cannot store a
1594 // reference to the trampoline code directly in this stub, because the
1595 // builtin stubs may not have been generated yet.
1596 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1597 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1598 isolate());
1599 __ mov(edx, Immediate(construct_entry));
1600 } else {
1601 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1602 __ mov(edx, Immediate(entry));
1603 }
1604 __ mov(edx, Operand(edx, 0)); // deref address
1605 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
1606 __ call(edx);
1607
1608 // Unlink this frame from the handler chain.
1609 __ PopStackHandler();
1610
1611 __ bind(&exit);
1612 // Check if the current stack frame is marked as the outermost JS frame.
1613 __ pop(ebx);
1614 __ cmp(ebx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
1615 __ j(not_equal, ¬_outermost_js_2);
1616 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
1617 __ bind(¬_outermost_js_2);
1618
1619 // Restore the top frame descriptor from the stack.
1620 __ pop(Operand::StaticVariable(ExternalReference(
1621 Isolate::kCEntryFPAddress, isolate())));
1622
1623 // Restore callee-saved registers (C calling conventions).
1624 __ pop(ebx);
1625 __ pop(esi);
1626 __ pop(edi);
1627 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
1628
1629 // Restore frame pointer and return.
1630 __ pop(ebp);
1631 __ ret(0);
1632 }
1633
1634
1635 // -------------------------------------------------------------------------
1636 // StringCharCodeAtGenerator
1637
GenerateFast(MacroAssembler * masm)1638 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
1639 // If the receiver is a smi trigger the non-string case.
1640 STATIC_ASSERT(kSmiTag == 0);
1641 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
1642 __ JumpIfSmi(object_, receiver_not_string_);
1643
1644 // Fetch the instance type of the receiver into result register.
1645 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
1646 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
1647 // If the receiver is not a string trigger the non-string case.
1648 __ test(result_, Immediate(kIsNotStringMask));
1649 __ j(not_zero, receiver_not_string_);
1650 }
1651
1652 // If the index is non-smi trigger the non-smi case.
1653 STATIC_ASSERT(kSmiTag == 0);
1654 __ JumpIfNotSmi(index_, &index_not_smi_);
1655 __ bind(&got_smi_index_);
1656
1657 // Check for index out of range.
1658 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
1659 __ j(above_equal, index_out_of_range_);
1660
1661 __ SmiUntag(index_);
1662
1663 Factory* factory = masm->isolate()->factory();
1664 StringCharLoadGenerator::Generate(
1665 masm, factory, object_, index_, result_, &call_runtime_);
1666
1667 __ SmiTag(result_);
1668 __ bind(&exit_);
1669 }
1670
1671
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)1672 void StringCharCodeAtGenerator::GenerateSlow(
1673 MacroAssembler* masm, EmbedMode embed_mode,
1674 const RuntimeCallHelper& call_helper) {
1675 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
1676
1677 // Index is not a smi.
1678 __ bind(&index_not_smi_);
1679 // If index is a heap number, try converting it to an integer.
1680 __ CheckMap(index_,
1681 masm->isolate()->factory()->heap_number_map(),
1682 index_not_number_,
1683 DONT_DO_SMI_CHECK);
1684 call_helper.BeforeCall(masm);
1685 if (embed_mode == PART_OF_IC_HANDLER) {
1686 __ push(LoadWithVectorDescriptor::VectorRegister());
1687 __ push(LoadDescriptor::SlotRegister());
1688 }
1689 __ push(object_);
1690 __ push(index_); // Consumed by runtime conversion function.
1691 __ CallRuntime(Runtime::kNumberToSmi);
1692 if (!index_.is(eax)) {
1693 // Save the conversion result before the pop instructions below
1694 // have a chance to overwrite it.
1695 __ mov(index_, eax);
1696 }
1697 __ pop(object_);
1698 if (embed_mode == PART_OF_IC_HANDLER) {
1699 __ pop(LoadDescriptor::SlotRegister());
1700 __ pop(LoadWithVectorDescriptor::VectorRegister());
1701 }
1702 // Reload the instance type.
1703 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
1704 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
1705 call_helper.AfterCall(masm);
1706 // If index is still not a smi, it must be out of range.
1707 STATIC_ASSERT(kSmiTag == 0);
1708 __ JumpIfNotSmi(index_, index_out_of_range_);
1709 // Otherwise, return to the fast path.
1710 __ jmp(&got_smi_index_);
1711
1712 // Call runtime. We get here when the receiver is a string and the
1713 // index is a number, but the code of getting the actual character
1714 // is too complex (e.g., when the string needs to be flattened).
1715 __ bind(&call_runtime_);
1716 call_helper.BeforeCall(masm);
1717 __ push(object_);
1718 __ SmiTag(index_);
1719 __ push(index_);
1720 __ CallRuntime(Runtime::kStringCharCodeAtRT);
1721 if (!result_.is(eax)) {
1722 __ mov(result_, eax);
1723 }
1724 call_helper.AfterCall(masm);
1725 __ jmp(&exit_);
1726
1727 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
1728 }
1729
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)1730 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
1731 Register left,
1732 Register right,
1733 Register scratch1,
1734 Register scratch2) {
1735 Register length = scratch1;
1736
1737 // Compare lengths.
1738 Label strings_not_equal, check_zero_length;
1739 __ mov(length, FieldOperand(left, String::kLengthOffset));
1740 __ cmp(length, FieldOperand(right, String::kLengthOffset));
1741 __ j(equal, &check_zero_length, Label::kNear);
1742 __ bind(&strings_not_equal);
1743 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
1744 __ ret(0);
1745
1746 // Check if the length is zero.
1747 Label compare_chars;
1748 __ bind(&check_zero_length);
1749 STATIC_ASSERT(kSmiTag == 0);
1750 __ test(length, length);
1751 __ j(not_zero, &compare_chars, Label::kNear);
1752 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1753 __ ret(0);
1754
1755 // Compare characters.
1756 __ bind(&compare_chars);
1757 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
1758 &strings_not_equal, Label::kNear);
1759
1760 // Characters are equal.
1761 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1762 __ ret(0);
1763 }
1764
1765
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)1766 void StringHelper::GenerateCompareFlatOneByteStrings(
1767 MacroAssembler* masm, Register left, Register right, Register scratch1,
1768 Register scratch2, Register scratch3) {
1769 Counters* counters = masm->isolate()->counters();
1770 __ IncrementCounter(counters->string_compare_native(), 1);
1771
1772 // Find minimum length.
1773 Label left_shorter;
1774 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
1775 __ mov(scratch3, scratch1);
1776 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
1777
1778 Register length_delta = scratch3;
1779
1780 __ j(less_equal, &left_shorter, Label::kNear);
1781 // Right string is shorter. Change scratch1 to be length of right string.
1782 __ sub(scratch1, length_delta);
1783 __ bind(&left_shorter);
1784
1785 Register min_length = scratch1;
1786
1787 // If either length is zero, just compare lengths.
1788 Label compare_lengths;
1789 __ test(min_length, min_length);
1790 __ j(zero, &compare_lengths, Label::kNear);
1791
1792 // Compare characters.
1793 Label result_not_equal;
1794 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
1795 &result_not_equal, Label::kNear);
1796
1797 // Compare lengths - strings up to min-length are equal.
1798 __ bind(&compare_lengths);
1799 __ test(length_delta, length_delta);
1800 Label length_not_equal;
1801 __ j(not_zero, &length_not_equal, Label::kNear);
1802
1803 // Result is EQUAL.
1804 STATIC_ASSERT(EQUAL == 0);
1805 STATIC_ASSERT(kSmiTag == 0);
1806 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1807 __ ret(0);
1808
1809 Label result_greater;
1810 Label result_less;
1811 __ bind(&length_not_equal);
1812 __ j(greater, &result_greater, Label::kNear);
1813 __ jmp(&result_less, Label::kNear);
1814 __ bind(&result_not_equal);
1815 __ j(above, &result_greater, Label::kNear);
1816 __ bind(&result_less);
1817
1818 // Result is LESS.
1819 __ Move(eax, Immediate(Smi::FromInt(LESS)));
1820 __ ret(0);
1821
1822 // Result is GREATER.
1823 __ bind(&result_greater);
1824 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
1825 __ ret(0);
1826 }
1827
1828
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch,Label * chars_not_equal,Label::Distance chars_not_equal_near)1829 void StringHelper::GenerateOneByteCharsCompareLoop(
1830 MacroAssembler* masm, Register left, Register right, Register length,
1831 Register scratch, Label* chars_not_equal,
1832 Label::Distance chars_not_equal_near) {
1833 // Change index to run from -length to -1 by adding length to string
1834 // start. This means that loop ends when index reaches zero, which
1835 // doesn't need an additional compare.
1836 __ SmiUntag(length);
1837 __ lea(left,
1838 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
1839 __ lea(right,
1840 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
1841 __ neg(length);
1842 Register index = length; // index = -length;
1843
1844 // Compare loop.
1845 Label loop;
1846 __ bind(&loop);
1847 __ mov_b(scratch, Operand(left, index, times_1, 0));
1848 __ cmpb(scratch, Operand(right, index, times_1, 0));
1849 __ j(not_equal, chars_not_equal, chars_not_equal_near);
1850 __ inc(index);
1851 __ j(not_zero, &loop);
1852 }
1853
1854
Generate(MacroAssembler * masm)1855 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
1856 // ----------- S t a t e -------------
1857 // -- edx : left
1858 // -- eax : right
1859 // -- esp[0] : return address
1860 // -----------------------------------
1861
1862 // Load ecx with the allocation site. We stick an undefined dummy value here
1863 // and replace it with the real allocation site later when we instantiate this
1864 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
1865 __ mov(ecx, isolate()->factory()->undefined_value());
1866
1867 // Make sure that we actually patched the allocation site.
1868 if (FLAG_debug_code) {
1869 __ test(ecx, Immediate(kSmiTagMask));
1870 __ Assert(not_equal, kExpectedAllocationSite);
1871 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
1872 isolate()->factory()->allocation_site_map());
1873 __ Assert(equal, kExpectedAllocationSite);
1874 }
1875
1876 // Tail call into the stub that handles binary operations with allocation
1877 // sites.
1878 BinaryOpWithAllocationSiteStub stub(isolate(), state());
1879 __ TailCallStub(&stub);
1880 }
1881
1882
GenerateBooleans(MacroAssembler * masm)1883 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
1884 DCHECK_EQ(CompareICState::BOOLEAN, state());
1885 Label miss;
1886 Label::Distance const miss_distance =
1887 masm->emit_debug_code() ? Label::kFar : Label::kNear;
1888
1889 __ JumpIfSmi(edx, &miss, miss_distance);
1890 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
1891 __ JumpIfSmi(eax, &miss, miss_distance);
1892 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1893 __ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
1894 __ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
1895 if (!Token::IsEqualityOp(op())) {
1896 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
1897 __ AssertSmi(eax);
1898 __ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset));
1899 __ AssertSmi(edx);
1900 __ push(eax);
1901 __ mov(eax, edx);
1902 __ pop(edx);
1903 }
1904 __ sub(eax, edx);
1905 __ Ret();
1906
1907 __ bind(&miss);
1908 GenerateMiss(masm);
1909 }
1910
1911
GenerateSmis(MacroAssembler * masm)1912 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
1913 DCHECK(state() == CompareICState::SMI);
1914 Label miss;
1915 __ mov(ecx, edx);
1916 __ or_(ecx, eax);
1917 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
1918
1919 if (GetCondition() == equal) {
1920 // For equality we do not care about the sign of the result.
1921 __ sub(eax, edx);
1922 } else {
1923 Label done;
1924 __ sub(edx, eax);
1925 __ j(no_overflow, &done, Label::kNear);
1926 // Correct sign of result in case of overflow.
1927 __ not_(edx);
1928 __ bind(&done);
1929 __ mov(eax, edx);
1930 }
1931 __ ret(0);
1932
1933 __ bind(&miss);
1934 GenerateMiss(masm);
1935 }
1936
1937
GenerateNumbers(MacroAssembler * masm)1938 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
1939 DCHECK(state() == CompareICState::NUMBER);
1940
1941 Label generic_stub;
1942 Label unordered, maybe_undefined1, maybe_undefined2;
1943 Label miss;
1944
1945 if (left() == CompareICState::SMI) {
1946 __ JumpIfNotSmi(edx, &miss);
1947 }
1948 if (right() == CompareICState::SMI) {
1949 __ JumpIfNotSmi(eax, &miss);
1950 }
1951
1952 // Load left and right operand.
1953 Label done, left, left_smi, right_smi;
1954 __ JumpIfSmi(eax, &right_smi, Label::kNear);
1955 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
1956 isolate()->factory()->heap_number_map());
1957 __ j(not_equal, &maybe_undefined1, Label::kNear);
1958 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
1959 __ jmp(&left, Label::kNear);
1960 __ bind(&right_smi);
1961 __ mov(ecx, eax); // Can't clobber eax because we can still jump away.
1962 __ SmiUntag(ecx);
1963 __ Cvtsi2sd(xmm1, ecx);
1964
1965 __ bind(&left);
1966 __ JumpIfSmi(edx, &left_smi, Label::kNear);
1967 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1968 isolate()->factory()->heap_number_map());
1969 __ j(not_equal, &maybe_undefined2, Label::kNear);
1970 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
1971 __ jmp(&done);
1972 __ bind(&left_smi);
1973 __ mov(ecx, edx); // Can't clobber edx because we can still jump away.
1974 __ SmiUntag(ecx);
1975 __ Cvtsi2sd(xmm0, ecx);
1976
1977 __ bind(&done);
1978 // Compare operands.
1979 __ ucomisd(xmm0, xmm1);
1980
1981 // Don't base result on EFLAGS when a NaN is involved.
1982 __ j(parity_even, &unordered, Label::kNear);
1983
1984 // Return a result of -1, 0, or 1, based on EFLAGS.
1985 // Performing mov, because xor would destroy the flag register.
1986 __ mov(eax, 0); // equal
1987 __ mov(ecx, Immediate(Smi::FromInt(1)));
1988 __ cmov(above, eax, ecx);
1989 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1990 __ cmov(below, eax, ecx);
1991 __ ret(0);
1992
1993 __ bind(&unordered);
1994 __ bind(&generic_stub);
1995 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
1996 CompareICState::GENERIC, CompareICState::GENERIC);
1997 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
1998
1999 __ bind(&maybe_undefined1);
2000 if (Token::IsOrderedRelationalCompareOp(op())) {
2001 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
2002 __ j(not_equal, &miss);
2003 __ JumpIfSmi(edx, &unordered);
2004 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
2005 __ j(not_equal, &maybe_undefined2, Label::kNear);
2006 __ jmp(&unordered);
2007 }
2008
2009 __ bind(&maybe_undefined2);
2010 if (Token::IsOrderedRelationalCompareOp(op())) {
2011 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
2012 __ j(equal, &unordered);
2013 }
2014
2015 __ bind(&miss);
2016 GenerateMiss(masm);
2017 }
2018
2019
GenerateInternalizedStrings(MacroAssembler * masm)2020 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2021 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2022 DCHECK(GetCondition() == equal);
2023
2024 // Registers containing left and right operands respectively.
2025 Register left = edx;
2026 Register right = eax;
2027 Register tmp1 = ecx;
2028 Register tmp2 = ebx;
2029
2030 // Check that both operands are heap objects.
2031 Label miss;
2032 __ mov(tmp1, left);
2033 STATIC_ASSERT(kSmiTag == 0);
2034 __ and_(tmp1, right);
2035 __ JumpIfSmi(tmp1, &miss, Label::kNear);
2036
2037 // Check that both operands are internalized strings.
2038 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
2039 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
2040 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
2041 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
2042 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2043 __ or_(tmp1, tmp2);
2044 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
2045 __ j(not_zero, &miss, Label::kNear);
2046
2047 // Internalized strings are compared by identity.
2048 Label done;
2049 __ cmp(left, right);
2050 // Make sure eax is non-zero. At this point input operands are
2051 // guaranteed to be non-zero.
2052 DCHECK(right.is(eax));
2053 __ j(not_equal, &done, Label::kNear);
2054 STATIC_ASSERT(EQUAL == 0);
2055 STATIC_ASSERT(kSmiTag == 0);
2056 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2057 __ bind(&done);
2058 __ ret(0);
2059
2060 __ bind(&miss);
2061 GenerateMiss(masm);
2062 }
2063
2064
GenerateUniqueNames(MacroAssembler * masm)2065 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2066 DCHECK(state() == CompareICState::UNIQUE_NAME);
2067 DCHECK(GetCondition() == equal);
2068
2069 // Registers containing left and right operands respectively.
2070 Register left = edx;
2071 Register right = eax;
2072 Register tmp1 = ecx;
2073 Register tmp2 = ebx;
2074
2075 // Check that both operands are heap objects.
2076 Label miss;
2077 __ mov(tmp1, left);
2078 STATIC_ASSERT(kSmiTag == 0);
2079 __ and_(tmp1, right);
2080 __ JumpIfSmi(tmp1, &miss, Label::kNear);
2081
2082 // Check that both operands are unique names. This leaves the instance
2083 // types loaded in tmp1 and tmp2.
2084 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
2085 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
2086 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
2087 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
2088
2089 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
2090 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
2091
2092 // Unique names are compared by identity.
2093 Label done;
2094 __ cmp(left, right);
2095 // Make sure eax is non-zero. At this point input operands are
2096 // guaranteed to be non-zero.
2097 DCHECK(right.is(eax));
2098 __ j(not_equal, &done, Label::kNear);
2099 STATIC_ASSERT(EQUAL == 0);
2100 STATIC_ASSERT(kSmiTag == 0);
2101 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2102 __ bind(&done);
2103 __ ret(0);
2104
2105 __ bind(&miss);
2106 GenerateMiss(masm);
2107 }
2108
2109
GenerateStrings(MacroAssembler * masm)2110 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2111 DCHECK(state() == CompareICState::STRING);
2112 Label miss;
2113
2114 bool equality = Token::IsEqualityOp(op());
2115
2116 // Registers containing left and right operands respectively.
2117 Register left = edx;
2118 Register right = eax;
2119 Register tmp1 = ecx;
2120 Register tmp2 = ebx;
2121 Register tmp3 = edi;
2122
2123 // Check that both operands are heap objects.
2124 __ mov(tmp1, left);
2125 STATIC_ASSERT(kSmiTag == 0);
2126 __ and_(tmp1, right);
2127 __ JumpIfSmi(tmp1, &miss);
2128
2129 // Check that both operands are strings. This leaves the instance
2130 // types loaded in tmp1 and tmp2.
2131 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
2132 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
2133 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
2134 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
2135 __ mov(tmp3, tmp1);
2136 STATIC_ASSERT(kNotStringTag != 0);
2137 __ or_(tmp3, tmp2);
2138 __ test(tmp3, Immediate(kIsNotStringMask));
2139 __ j(not_zero, &miss);
2140
2141 // Fast check for identical strings.
2142 Label not_same;
2143 __ cmp(left, right);
2144 __ j(not_equal, ¬_same, Label::kNear);
2145 STATIC_ASSERT(EQUAL == 0);
2146 STATIC_ASSERT(kSmiTag == 0);
2147 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2148 __ ret(0);
2149
2150 // Handle not identical strings.
2151 __ bind(¬_same);
2152
2153 // Check that both strings are internalized. If they are, we're done
2154 // because we already know they are not identical. But in the case of
2155 // non-equality compare, we still need to determine the order. We
2156 // also know they are both strings.
2157 if (equality) {
2158 Label do_compare;
2159 STATIC_ASSERT(kInternalizedTag == 0);
2160 __ or_(tmp1, tmp2);
2161 __ test(tmp1, Immediate(kIsNotInternalizedMask));
2162 __ j(not_zero, &do_compare, Label::kNear);
2163 // Make sure eax is non-zero. At this point input operands are
2164 // guaranteed to be non-zero.
2165 DCHECK(right.is(eax));
2166 __ ret(0);
2167 __ bind(&do_compare);
2168 }
2169
2170 // Check that both strings are sequential one-byte.
2171 Label runtime;
2172 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
2173
2174 // Compare flat one byte strings. Returns when done.
2175 if (equality) {
2176 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
2177 tmp2);
2178 } else {
2179 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2180 tmp2, tmp3);
2181 }
2182
2183 // Handle more complex cases in runtime.
2184 __ bind(&runtime);
2185 if (equality) {
2186 {
2187 FrameScope scope(masm, StackFrame::INTERNAL);
2188 __ Push(left);
2189 __ Push(right);
2190 __ CallRuntime(Runtime::kStringEqual);
2191 }
2192 __ sub(eax, Immediate(masm->isolate()->factory()->true_value()));
2193 __ Ret();
2194 } else {
2195 __ pop(tmp1); // Return address.
2196 __ push(left);
2197 __ push(right);
2198 __ push(tmp1);
2199 __ TailCallRuntime(Runtime::kStringCompare);
2200 }
2201
2202 __ bind(&miss);
2203 GenerateMiss(masm);
2204 }
2205
2206
GenerateReceivers(MacroAssembler * masm)2207 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2208 DCHECK_EQ(CompareICState::RECEIVER, state());
2209 Label miss;
2210 __ mov(ecx, edx);
2211 __ and_(ecx, eax);
2212 __ JumpIfSmi(ecx, &miss, Label::kNear);
2213
2214 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2215 __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
2216 __ j(below, &miss, Label::kNear);
2217 __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
2218 __ j(below, &miss, Label::kNear);
2219
2220 DCHECK_EQ(equal, GetCondition());
2221 __ sub(eax, edx);
2222 __ ret(0);
2223
2224 __ bind(&miss);
2225 GenerateMiss(masm);
2226 }
2227
2228
GenerateKnownReceivers(MacroAssembler * masm)2229 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2230 Label miss;
2231 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2232 __ mov(ecx, edx);
2233 __ and_(ecx, eax);
2234 __ JumpIfSmi(ecx, &miss, Label::kNear);
2235
2236 __ GetWeakValue(edi, cell);
2237 __ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset));
2238 __ j(not_equal, &miss, Label::kNear);
2239 __ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset));
2240 __ j(not_equal, &miss, Label::kNear);
2241
2242 if (Token::IsEqualityOp(op())) {
2243 __ sub(eax, edx);
2244 __ ret(0);
2245 } else {
2246 __ PopReturnAddressTo(ecx);
2247 __ Push(edx);
2248 __ Push(eax);
2249 __ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition()))));
2250 __ PushReturnAddressFrom(ecx);
2251 __ TailCallRuntime(Runtime::kCompare);
2252 }
2253
2254 __ bind(&miss);
2255 GenerateMiss(masm);
2256 }
2257
2258
GenerateMiss(MacroAssembler * masm)2259 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2260 {
2261 // Call the runtime system in a fresh internal frame.
2262 FrameScope scope(masm, StackFrame::INTERNAL);
2263 __ push(edx); // Preserve edx and eax.
2264 __ push(eax);
2265 __ push(edx); // And also use them as the arguments.
2266 __ push(eax);
2267 __ push(Immediate(Smi::FromInt(op())));
2268 __ CallRuntime(Runtime::kCompareIC_Miss);
2269 // Compute the entry point of the rewritten stub.
2270 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
2271 __ pop(eax);
2272 __ pop(edx);
2273 }
2274
2275 // Do a tail call to the rewritten stub.
2276 __ jmp(edi);
2277 }
2278
2279
2280 // Helper function used to check that the dictionary doesn't contain
2281 // the property. This function may return false negatives, so miss_label
2282 // must always call a backup property check that is complete.
2283 // This function is safe to call if the receiver has fast properties.
2284 // Name must be a unique name and receiver must be a heap object.
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register properties,Handle<Name> name,Register r0)2285 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
2286 Label* miss,
2287 Label* done,
2288 Register properties,
2289 Handle<Name> name,
2290 Register r0) {
2291 DCHECK(name->IsUniqueName());
2292
2293 // If names of slots in range from 1 to kProbes - 1 for the hash value are
2294 // not equal to the name and kProbes-th slot is not used (its name is the
2295 // undefined value), it guarantees the hash table doesn't contain the
2296 // property. It's true even if some slots represent deleted properties
2297 // (their names are the hole value).
2298 for (int i = 0; i < kInlinedProbes; i++) {
2299 // Compute the masked index: (hash + i + i * i) & mask.
2300 Register index = r0;
2301 // Capacity is smi 2^n.
2302 __ mov(index, FieldOperand(properties, kCapacityOffset));
2303 __ dec(index);
2304 __ and_(index,
2305 Immediate(Smi::FromInt(name->Hash() +
2306 NameDictionary::GetProbeOffset(i))));
2307
2308 // Scale the index by multiplying by the entry size.
2309 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2310 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
2311 Register entity_name = r0;
2312 // Having undefined at this place means the name is not contained.
2313 STATIC_ASSERT(kSmiTagSize == 1);
2314 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
2315 kElementsStartOffset - kHeapObjectTag));
2316 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
2317 __ j(equal, done);
2318
2319 // Stop if found the property.
2320 __ cmp(entity_name, Handle<Name>(name));
2321 __ j(equal, miss);
2322
2323 Label good;
2324 // Check for the hole and skip.
2325 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
2326 __ j(equal, &good, Label::kNear);
2327
2328 // Check if the entry name is not a unique name.
2329 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
2330 __ JumpIfNotUniqueNameInstanceType(
2331 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
2332 __ bind(&good);
2333 }
2334
2335 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
2336 NEGATIVE_LOOKUP);
2337 __ push(Immediate(Handle<Object>(name)));
2338 __ push(Immediate(name->Hash()));
2339 __ CallStub(&stub);
2340 __ test(r0, r0);
2341 __ j(not_zero, miss);
2342 __ jmp(done);
2343 }
2344
Generate(MacroAssembler * masm)2345 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2346 // This stub overrides SometimesSetsUpAFrame() to return false. That means
2347 // we cannot call anything that could cause a GC from this stub.
2348 // Stack frame on entry:
2349 // esp[0 * kPointerSize]: return address.
2350 // esp[1 * kPointerSize]: key's hash.
2351 // esp[2 * kPointerSize]: key.
2352 // Registers:
2353 // dictionary_: NameDictionary to probe.
2354 // result_: used as scratch.
2355 // index_: will hold an index of entry if lookup is successful.
2356 // might alias with result_.
2357 // Returns:
2358 // result_ is zero if lookup failed, non zero otherwise.
2359
2360 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2361
2362 Register scratch = result();
2363
2364 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
2365 __ dec(scratch);
2366 __ SmiUntag(scratch);
2367 __ push(scratch);
2368
2369 // If names of slots in range from 1 to kProbes - 1 for the hash value are
2370 // not equal to the name and kProbes-th slot is not used (its name is the
2371 // undefined value), it guarantees the hash table doesn't contain the
2372 // property. It's true even if some slots represent deleted properties
2373 // (their names are the null value).
2374 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
2375 // Compute the masked index: (hash + i + i * i) & mask.
2376 __ mov(scratch, Operand(esp, 2 * kPointerSize));
2377 if (i > 0) {
2378 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
2379 }
2380 __ and_(scratch, Operand(esp, 0));
2381
2382 // Scale the index by multiplying by the entry size.
2383 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2384 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
2385
2386 // Having undefined at this place means the name is not contained.
2387 STATIC_ASSERT(kSmiTagSize == 1);
2388 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
2389 kElementsStartOffset - kHeapObjectTag));
2390 __ cmp(scratch, isolate()->factory()->undefined_value());
2391 __ j(equal, ¬_in_dictionary);
2392
2393 // Stop if found the property.
2394 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
2395 __ j(equal, &in_dictionary);
2396
2397 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
2398 // If we hit a key that is not a unique name during negative
2399 // lookup we have to bailout as this key might be equal to the
2400 // key we are looking for.
2401
2402 // Check if the entry name is not a unique name.
2403 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2404 __ JumpIfNotUniqueNameInstanceType(
2405 FieldOperand(scratch, Map::kInstanceTypeOffset),
2406 &maybe_in_dictionary);
2407 }
2408 }
2409
2410 __ bind(&maybe_in_dictionary);
2411 // If we are doing negative lookup then probing failure should be
2412 // treated as a lookup success. For positive lookup probing failure
2413 // should be treated as lookup failure.
2414 if (mode() == POSITIVE_LOOKUP) {
2415 __ mov(result(), Immediate(0));
2416 __ Drop(1);
2417 __ ret(2 * kPointerSize);
2418 }
2419
2420 __ bind(&in_dictionary);
2421 __ mov(result(), Immediate(1));
2422 __ Drop(1);
2423 __ ret(2 * kPointerSize);
2424
2425 __ bind(¬_in_dictionary);
2426 __ mov(result(), Immediate(0));
2427 __ Drop(1);
2428 __ ret(2 * kPointerSize);
2429 }
2430
2431
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)2432 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
2433 Isolate* isolate) {
2434 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
2435 stub.GetCode();
2436 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
2437 stub2.GetCode();
2438 }
2439
2440
2441 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
2442 // the value has just been written into the object, now this stub makes sure
2443 // we keep the GC informed. The word in the object where the value has been
2444 // written is in the address register.
Generate(MacroAssembler * masm)2445 void RecordWriteStub::Generate(MacroAssembler* masm) {
2446 Label skip_to_incremental_noncompacting;
2447 Label skip_to_incremental_compacting;
2448
2449 // The first two instructions are generated with labels so as to get the
2450 // offset fixed up correctly by the bind(Label*) call. We patch it back and
2451 // forth between a compare instructions (a nop in this position) and the
2452 // real branch when we start and stop incremental heap marking.
2453 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
2454 __ jmp(&skip_to_incremental_compacting, Label::kFar);
2455
2456 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2457 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2458 MacroAssembler::kReturnAtEnd);
2459 } else {
2460 __ ret(0);
2461 }
2462
2463 __ bind(&skip_to_incremental_noncompacting);
2464 GenerateIncremental(masm, INCREMENTAL);
2465
2466 __ bind(&skip_to_incremental_compacting);
2467 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
2468
2469 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
2470 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
2471 masm->set_byte_at(0, kTwoByteNopInstruction);
2472 masm->set_byte_at(2, kFiveByteNopInstruction);
2473 }
2474
2475
GenerateIncremental(MacroAssembler * masm,Mode mode)2476 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
2477 regs_.Save(masm);
2478
2479 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2480 Label dont_need_remembered_set;
2481
2482 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
2483 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
2484 regs_.scratch0(),
2485 &dont_need_remembered_set);
2486
2487 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
2488 &dont_need_remembered_set);
2489
2490 // First notify the incremental marker if necessary, then update the
2491 // remembered set.
2492 CheckNeedsToInformIncrementalMarker(
2493 masm,
2494 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
2495 mode);
2496 InformIncrementalMarker(masm);
2497 regs_.Restore(masm);
2498 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2499 MacroAssembler::kReturnAtEnd);
2500
2501 __ bind(&dont_need_remembered_set);
2502 }
2503
2504 CheckNeedsToInformIncrementalMarker(
2505 masm,
2506 kReturnOnNoNeedToInformIncrementalMarker,
2507 mode);
2508 InformIncrementalMarker(masm);
2509 regs_.Restore(masm);
2510 __ ret(0);
2511 }
2512
2513
InformIncrementalMarker(MacroAssembler * masm)2514 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
2515 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
2516 int argument_count = 3;
2517 __ PrepareCallCFunction(argument_count, regs_.scratch0());
2518 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
2519 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
2520 __ mov(Operand(esp, 2 * kPointerSize),
2521 Immediate(ExternalReference::isolate_address(isolate())));
2522
2523 AllowExternalCallThatCantCauseGC scope(masm);
2524 __ CallCFunction(
2525 ExternalReference::incremental_marking_record_write_function(isolate()),
2526 argument_count);
2527
2528 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
2529 }
2530
2531
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)2532 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
2533 MacroAssembler* masm,
2534 OnNoNeedToInformIncrementalMarker on_no_need,
2535 Mode mode) {
2536 Label object_is_black, need_incremental, need_incremental_pop_object;
2537
2538 // Let's look at the color of the object: If it is not black we don't have
2539 // to inform the incremental marker.
2540 __ JumpIfBlack(regs_.object(),
2541 regs_.scratch0(),
2542 regs_.scratch1(),
2543 &object_is_black,
2544 Label::kNear);
2545
2546 regs_.Restore(masm);
2547 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2548 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2549 MacroAssembler::kReturnAtEnd);
2550 } else {
2551 __ ret(0);
2552 }
2553
2554 __ bind(&object_is_black);
2555
2556 // Get the value from the slot.
2557 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
2558
2559 if (mode == INCREMENTAL_COMPACTION) {
2560 Label ensure_not_white;
2561
2562 __ CheckPageFlag(regs_.scratch0(), // Contains value.
2563 regs_.scratch1(), // Scratch.
2564 MemoryChunk::kEvacuationCandidateMask,
2565 zero,
2566 &ensure_not_white,
2567 Label::kNear);
2568
2569 __ CheckPageFlag(regs_.object(),
2570 regs_.scratch1(), // Scratch.
2571 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
2572 not_zero,
2573 &ensure_not_white,
2574 Label::kNear);
2575
2576 __ jmp(&need_incremental);
2577
2578 __ bind(&ensure_not_white);
2579 }
2580
2581 // We need an extra register for this, so we push the object register
2582 // temporarily.
2583 __ push(regs_.object());
2584 __ JumpIfWhite(regs_.scratch0(), // The value.
2585 regs_.scratch1(), // Scratch.
2586 regs_.object(), // Scratch.
2587 &need_incremental_pop_object, Label::kNear);
2588 __ pop(regs_.object());
2589
2590 regs_.Restore(masm);
2591 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2592 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2593 MacroAssembler::kReturnAtEnd);
2594 } else {
2595 __ ret(0);
2596 }
2597
2598 __ bind(&need_incremental_pop_object);
2599 __ pop(regs_.object());
2600
2601 __ bind(&need_incremental);
2602
2603 // Fall through when we need to inform the incremental marker.
2604 }
2605
2606
Generate(MacroAssembler * masm)2607 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
2608 CEntryStub ces(isolate(), 1, kSaveFPRegs);
2609 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
2610 int parameter_count_offset =
2611 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
2612 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
2613 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
2614 __ pop(ecx);
2615 int additional_offset =
2616 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
2617 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
2618 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
2619 }
2620
MaybeCallEntryHook(MacroAssembler * masm)2621 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
2622 if (masm->isolate()->function_entry_hook() != NULL) {
2623 ProfileEntryHookStub stub(masm->isolate());
2624 masm->CallStub(&stub);
2625 }
2626 }
2627
2628
Generate(MacroAssembler * masm)2629 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
2630 // Save volatile registers.
2631 const int kNumSavedRegisters = 3;
2632 __ push(eax);
2633 __ push(ecx);
2634 __ push(edx);
2635
2636 // Calculate and push the original stack pointer.
2637 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
2638 __ push(eax);
2639
2640 // Retrieve our return address and use it to calculate the calling
2641 // function's address.
2642 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
2643 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
2644 __ push(eax);
2645
2646 // Call the entry hook.
2647 DCHECK(isolate()->function_entry_hook() != NULL);
2648 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
2649 RelocInfo::RUNTIME_ENTRY);
2650 __ add(esp, Immediate(2 * kPointerSize));
2651
2652 // Restore ecx.
2653 __ pop(edx);
2654 __ pop(ecx);
2655 __ pop(eax);
2656
2657 __ ret(0);
2658 }
2659
2660
2661 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)2662 static void CreateArrayDispatch(MacroAssembler* masm,
2663 AllocationSiteOverrideMode mode) {
2664 if (mode == DISABLE_ALLOCATION_SITES) {
2665 T stub(masm->isolate(),
2666 GetInitialFastElementsKind(),
2667 mode);
2668 __ TailCallStub(&stub);
2669 } else if (mode == DONT_OVERRIDE) {
2670 int last_index = GetSequenceIndexFromFastElementsKind(
2671 TERMINAL_FAST_ELEMENTS_KIND);
2672 for (int i = 0; i <= last_index; ++i) {
2673 Label next;
2674 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2675 __ cmp(edx, kind);
2676 __ j(not_equal, &next);
2677 T stub(masm->isolate(), kind);
2678 __ TailCallStub(&stub);
2679 __ bind(&next);
2680 }
2681
2682 // If we reached this point there is a problem.
2683 __ Abort(kUnexpectedElementsKindInArrayConstructor);
2684 } else {
2685 UNREACHABLE();
2686 }
2687 }
2688
2689
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)2690 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
2691 AllocationSiteOverrideMode mode) {
2692 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
2693 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
2694 // eax - number of arguments
2695 // edi - constructor?
2696 // esp[0] - return address
2697 // esp[4] - last argument
2698 Label normal_sequence;
2699 if (mode == DONT_OVERRIDE) {
2700 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2701 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2702 STATIC_ASSERT(FAST_ELEMENTS == 2);
2703 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2704 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
2705 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
2706
2707 // is the low bit set? If so, we are holey and that is good.
2708 __ test_b(edx, Immediate(1));
2709 __ j(not_zero, &normal_sequence);
2710 }
2711
2712 // look at the first argument
2713 __ mov(ecx, Operand(esp, kPointerSize));
2714 __ test(ecx, ecx);
2715 __ j(zero, &normal_sequence);
2716
2717 if (mode == DISABLE_ALLOCATION_SITES) {
2718 ElementsKind initial = GetInitialFastElementsKind();
2719 ElementsKind holey_initial = GetHoleyElementsKind(initial);
2720
2721 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
2722 holey_initial,
2723 DISABLE_ALLOCATION_SITES);
2724 __ TailCallStub(&stub_holey);
2725
2726 __ bind(&normal_sequence);
2727 ArraySingleArgumentConstructorStub stub(masm->isolate(),
2728 initial,
2729 DISABLE_ALLOCATION_SITES);
2730 __ TailCallStub(&stub);
2731 } else if (mode == DONT_OVERRIDE) {
2732 // We are going to create a holey array, but our kind is non-holey.
2733 // Fix kind and retry.
2734 __ inc(edx);
2735
2736 if (FLAG_debug_code) {
2737 Handle<Map> allocation_site_map =
2738 masm->isolate()->factory()->allocation_site_map();
2739 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
2740 __ Assert(equal, kExpectedAllocationSite);
2741 }
2742
2743 // Save the resulting elements kind in type info. We can't just store r3
2744 // in the AllocationSite::transition_info field because elements kind is
2745 // restricted to a portion of the field...upper bits need to be left alone.
2746 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
2747 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
2748 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
2749
2750 __ bind(&normal_sequence);
2751 int last_index = GetSequenceIndexFromFastElementsKind(
2752 TERMINAL_FAST_ELEMENTS_KIND);
2753 for (int i = 0; i <= last_index; ++i) {
2754 Label next;
2755 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2756 __ cmp(edx, kind);
2757 __ j(not_equal, &next);
2758 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
2759 __ TailCallStub(&stub);
2760 __ bind(&next);
2761 }
2762
2763 // If we reached this point there is a problem.
2764 __ Abort(kUnexpectedElementsKindInArrayConstructor);
2765 } else {
2766 UNREACHABLE();
2767 }
2768 }
2769
2770
2771 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)2772 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
2773 int to_index = GetSequenceIndexFromFastElementsKind(
2774 TERMINAL_FAST_ELEMENTS_KIND);
2775 for (int i = 0; i <= to_index; ++i) {
2776 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2777 T stub(isolate, kind);
2778 stub.GetCode();
2779 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
2780 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
2781 stub1.GetCode();
2782 }
2783 }
2784 }
2785
GenerateStubsAheadOfTime(Isolate * isolate)2786 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2787 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
2788 isolate);
2789 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
2790 isolate);
2791 ArrayNArgumentsConstructorStub stub(isolate);
2792 stub.GetCode();
2793
2794 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
2795 for (int i = 0; i < 2; i++) {
2796 // For internal arrays we only need a few things
2797 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
2798 stubh1.GetCode();
2799 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
2800 stubh2.GetCode();
2801 }
2802 }
2803
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)2804 void ArrayConstructorStub::GenerateDispatchToArrayStub(
2805 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
2806 Label not_zero_case, not_one_case;
2807 __ test(eax, eax);
2808 __ j(not_zero, ¬_zero_case);
2809 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
2810
2811 __ bind(¬_zero_case);
2812 __ cmp(eax, 1);
2813 __ j(greater, ¬_one_case);
2814 CreateArrayDispatchOneArgument(masm, mode);
2815
2816 __ bind(¬_one_case);
2817 ArrayNArgumentsConstructorStub stub(masm->isolate());
2818 __ TailCallStub(&stub);
2819 }
2820
Generate(MacroAssembler * masm)2821 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
2822 // ----------- S t a t e -------------
2823 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
2824 // -- ebx : AllocationSite or undefined
2825 // -- edi : constructor
2826 // -- edx : Original constructor
2827 // -- esp[0] : return address
2828 // -- esp[4] : last argument
2829 // -----------------------------------
2830 if (FLAG_debug_code) {
2831 // The array construct code is only set for the global and natives
2832 // builtin Array functions which always have maps.
2833
2834 // Initial map for the builtin Array function should be a map.
2835 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
2836 // Will both indicate a NULL and a Smi.
2837 __ test(ecx, Immediate(kSmiTagMask));
2838 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
2839 __ CmpObjectType(ecx, MAP_TYPE, ecx);
2840 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
2841
2842 // We should either have undefined in ebx or a valid AllocationSite
2843 __ AssertUndefinedOrAllocationSite(ebx);
2844 }
2845
2846 Label subclassing;
2847
2848 // Enter the context of the Array function.
2849 __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2850
2851 __ cmp(edx, edi);
2852 __ j(not_equal, &subclassing);
2853
2854 Label no_info;
2855 // If the feedback vector is the undefined value call an array constructor
2856 // that doesn't use AllocationSites.
2857 __ cmp(ebx, isolate()->factory()->undefined_value());
2858 __ j(equal, &no_info);
2859
2860 // Only look at the lower 16 bits of the transition info.
2861 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
2862 __ SmiUntag(edx);
2863 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
2864 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
2865 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
2866
2867 __ bind(&no_info);
2868 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
2869
2870 // Subclassing.
2871 __ bind(&subclassing);
2872 __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
2873 __ add(eax, Immediate(3));
2874 __ PopReturnAddressTo(ecx);
2875 __ Push(edx);
2876 __ Push(ebx);
2877 __ PushReturnAddressFrom(ecx);
2878 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
2879 }
2880
2881
GenerateCase(MacroAssembler * masm,ElementsKind kind)2882 void InternalArrayConstructorStub::GenerateCase(
2883 MacroAssembler* masm, ElementsKind kind) {
2884 Label not_zero_case, not_one_case;
2885 Label normal_sequence;
2886
2887 __ test(eax, eax);
2888 __ j(not_zero, ¬_zero_case);
2889 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
2890 __ TailCallStub(&stub0);
2891
2892 __ bind(¬_zero_case);
2893 __ cmp(eax, 1);
2894 __ j(greater, ¬_one_case);
2895
2896 if (IsFastPackedElementsKind(kind)) {
2897 // We might need to create a holey array
2898 // look at the first argument
2899 __ mov(ecx, Operand(esp, kPointerSize));
2900 __ test(ecx, ecx);
2901 __ j(zero, &normal_sequence);
2902
2903 InternalArraySingleArgumentConstructorStub
2904 stub1_holey(isolate(), GetHoleyElementsKind(kind));
2905 __ TailCallStub(&stub1_holey);
2906 }
2907
2908 __ bind(&normal_sequence);
2909 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
2910 __ TailCallStub(&stub1);
2911
2912 __ bind(¬_one_case);
2913 ArrayNArgumentsConstructorStub stubN(isolate());
2914 __ TailCallStub(&stubN);
2915 }
2916
2917
Generate(MacroAssembler * masm)2918 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
2919 // ----------- S t a t e -------------
2920 // -- eax : argc
2921 // -- edi : constructor
2922 // -- esp[0] : return address
2923 // -- esp[4] : last argument
2924 // -----------------------------------
2925
2926 if (FLAG_debug_code) {
2927 // The array construct code is only set for the global and natives
2928 // builtin Array functions which always have maps.
2929
2930 // Initial map for the builtin Array function should be a map.
2931 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
2932 // Will both indicate a NULL and a Smi.
2933 __ test(ecx, Immediate(kSmiTagMask));
2934 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
2935 __ CmpObjectType(ecx, MAP_TYPE, ecx);
2936 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
2937 }
2938
2939 // Figure out the right elements kind
2940 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
2941
2942 // Load the map's "bit field 2" into |result|. We only need the first byte,
2943 // but the following masking takes care of that anyway.
2944 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
2945 // Retrieve elements_kind from bit field 2.
2946 __ DecodeField<Map::ElementsKindBits>(ecx);
2947
2948 if (FLAG_debug_code) {
2949 Label done;
2950 __ cmp(ecx, Immediate(FAST_ELEMENTS));
2951 __ j(equal, &done);
2952 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
2953 __ Assert(equal,
2954 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
2955 __ bind(&done);
2956 }
2957
2958 Label fast_elements_case;
2959 __ cmp(ecx, Immediate(FAST_ELEMENTS));
2960 __ j(equal, &fast_elements_case);
2961 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
2962
2963 __ bind(&fast_elements_case);
2964 GenerateCase(masm, FAST_ELEMENTS);
2965 }
2966
2967 // Generates an Operand for saving parameters after PrepareCallApiFunction.
ApiParameterOperand(int index)2968 static Operand ApiParameterOperand(int index) {
2969 return Operand(esp, index * kPointerSize);
2970 }
2971
2972
2973 // Prepares stack to put arguments (aligns and so on). Reserves
2974 // space for return value if needed (assumes the return value is a handle).
2975 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
2976 // etc. Saves context (esi). If space was reserved for return value then
2977 // stores the pointer to the reserved slot into esi.
PrepareCallApiFunction(MacroAssembler * masm,int argc)2978 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
2979 __ EnterApiExitFrame(argc);
2980 if (__ emit_debug_code()) {
2981 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
2982 }
2983 }
2984
2985
2986 // Calls an API function. Allocates HandleScope, extracts returned value
2987 // from handle and propagates exceptions. Clobbers ebx, edi and
2988 // caller-save registers. Restores context. On return removes
2989 // stack_space * kPointerSize (GCed).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,Operand thunk_last_arg,int stack_space,Operand * stack_space_operand,Operand return_value_operand,Operand * context_restore_operand)2990 static void CallApiFunctionAndReturn(MacroAssembler* masm,
2991 Register function_address,
2992 ExternalReference thunk_ref,
2993 Operand thunk_last_arg, int stack_space,
2994 Operand* stack_space_operand,
2995 Operand return_value_operand,
2996 Operand* context_restore_operand) {
2997 Isolate* isolate = masm->isolate();
2998
2999 ExternalReference next_address =
3000 ExternalReference::handle_scope_next_address(isolate);
3001 ExternalReference limit_address =
3002 ExternalReference::handle_scope_limit_address(isolate);
3003 ExternalReference level_address =
3004 ExternalReference::handle_scope_level_address(isolate);
3005
3006 DCHECK(edx.is(function_address));
3007 // Allocate HandleScope in callee-save registers.
3008 __ mov(ebx, Operand::StaticVariable(next_address));
3009 __ mov(edi, Operand::StaticVariable(limit_address));
3010 __ add(Operand::StaticVariable(level_address), Immediate(1));
3011
3012 if (FLAG_log_timer_events) {
3013 FrameScope frame(masm, StackFrame::MANUAL);
3014 __ PushSafepointRegisters();
3015 __ PrepareCallCFunction(1, eax);
3016 __ mov(Operand(esp, 0),
3017 Immediate(ExternalReference::isolate_address(isolate)));
3018 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
3019 1);
3020 __ PopSafepointRegisters();
3021 }
3022
3023
3024 Label profiler_disabled;
3025 Label end_profiler_check;
3026 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
3027 __ cmpb(Operand(eax, 0), Immediate(0));
3028 __ j(zero, &profiler_disabled);
3029
3030 // Additional parameter is the address of the actual getter function.
3031 __ mov(thunk_last_arg, function_address);
3032 // Call the api function.
3033 __ mov(eax, Immediate(thunk_ref));
3034 __ call(eax);
3035 __ jmp(&end_profiler_check);
3036
3037 __ bind(&profiler_disabled);
3038 // Call the api function.
3039 __ call(function_address);
3040 __ bind(&end_profiler_check);
3041
3042 if (FLAG_log_timer_events) {
3043 FrameScope frame(masm, StackFrame::MANUAL);
3044 __ PushSafepointRegisters();
3045 __ PrepareCallCFunction(1, eax);
3046 __ mov(Operand(esp, 0),
3047 Immediate(ExternalReference::isolate_address(isolate)));
3048 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
3049 1);
3050 __ PopSafepointRegisters();
3051 }
3052
3053 Label prologue;
3054 // Load the value from ReturnValue
3055 __ mov(eax, return_value_operand);
3056
3057 Label promote_scheduled_exception;
3058 Label delete_allocated_handles;
3059 Label leave_exit_frame;
3060
3061 __ bind(&prologue);
3062 // No more valid handles (the result handle was the last one). Restore
3063 // previous handle scope.
3064 __ mov(Operand::StaticVariable(next_address), ebx);
3065 __ sub(Operand::StaticVariable(level_address), Immediate(1));
3066 __ Assert(above_equal, kInvalidHandleScopeLevel);
3067 __ cmp(edi, Operand::StaticVariable(limit_address));
3068 __ j(not_equal, &delete_allocated_handles);
3069
3070 // Leave the API exit frame.
3071 __ bind(&leave_exit_frame);
3072 bool restore_context = context_restore_operand != NULL;
3073 if (restore_context) {
3074 __ mov(esi, *context_restore_operand);
3075 }
3076 if (stack_space_operand != nullptr) {
3077 __ mov(ebx, *stack_space_operand);
3078 }
3079 __ LeaveApiExitFrame(!restore_context);
3080
3081 // Check if the function scheduled an exception.
3082 ExternalReference scheduled_exception_address =
3083 ExternalReference::scheduled_exception_address(isolate);
3084 __ cmp(Operand::StaticVariable(scheduled_exception_address),
3085 Immediate(isolate->factory()->the_hole_value()));
3086 __ j(not_equal, &promote_scheduled_exception);
3087
3088 #if DEBUG
3089 // Check if the function returned a valid JavaScript value.
3090 Label ok;
3091 Register return_value = eax;
3092 Register map = ecx;
3093
3094 __ JumpIfSmi(return_value, &ok, Label::kNear);
3095 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
3096
3097 __ CmpInstanceType(map, LAST_NAME_TYPE);
3098 __ j(below_equal, &ok, Label::kNear);
3099
3100 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
3101 __ j(above_equal, &ok, Label::kNear);
3102
3103 __ cmp(map, isolate->factory()->heap_number_map());
3104 __ j(equal, &ok, Label::kNear);
3105
3106 __ cmp(return_value, isolate->factory()->undefined_value());
3107 __ j(equal, &ok, Label::kNear);
3108
3109 __ cmp(return_value, isolate->factory()->true_value());
3110 __ j(equal, &ok, Label::kNear);
3111
3112 __ cmp(return_value, isolate->factory()->false_value());
3113 __ j(equal, &ok, Label::kNear);
3114
3115 __ cmp(return_value, isolate->factory()->null_value());
3116 __ j(equal, &ok, Label::kNear);
3117
3118 __ Abort(kAPICallReturnedInvalidObject);
3119
3120 __ bind(&ok);
3121 #endif
3122
3123 if (stack_space_operand != nullptr) {
3124 DCHECK_EQ(0, stack_space);
3125 __ pop(ecx);
3126 __ add(esp, ebx);
3127 __ jmp(ecx);
3128 } else {
3129 __ ret(stack_space * kPointerSize);
3130 }
3131
3132 // Re-throw by promoting a scheduled exception.
3133 __ bind(&promote_scheduled_exception);
3134 __ TailCallRuntime(Runtime::kPromoteScheduledException);
3135
3136 // HandleScope limit has changed. Delete allocated extensions.
3137 ExternalReference delete_extensions =
3138 ExternalReference::delete_handle_scope_extensions(isolate);
3139 __ bind(&delete_allocated_handles);
3140 __ mov(Operand::StaticVariable(limit_address), edi);
3141 __ mov(edi, eax);
3142 __ mov(Operand(esp, 0),
3143 Immediate(ExternalReference::isolate_address(isolate)));
3144 __ mov(eax, Immediate(delete_extensions));
3145 __ call(eax);
3146 __ mov(eax, edi);
3147 __ jmp(&leave_exit_frame);
3148 }
3149
Generate(MacroAssembler * masm)3150 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
3151 // ----------- S t a t e -------------
3152 // -- edi : callee
3153 // -- ebx : call_data
3154 // -- ecx : holder
3155 // -- edx : api_function_address
3156 // -- esi : context
3157 // --
3158 // -- esp[0] : return address
3159 // -- esp[4] : last argument
3160 // -- ...
3161 // -- esp[argc * 4] : first argument
3162 // -- esp[(argc + 1) * 4] : receiver
3163 // -----------------------------------
3164
3165 Register callee = edi;
3166 Register call_data = ebx;
3167 Register holder = ecx;
3168 Register api_function_address = edx;
3169 Register context = esi;
3170 Register return_address = eax;
3171
3172 typedef FunctionCallbackArguments FCA;
3173
3174 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
3175 STATIC_ASSERT(FCA::kCalleeIndex == 5);
3176 STATIC_ASSERT(FCA::kDataIndex == 4);
3177 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3178 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3179 STATIC_ASSERT(FCA::kIsolateIndex == 1);
3180 STATIC_ASSERT(FCA::kHolderIndex == 0);
3181 STATIC_ASSERT(FCA::kNewTargetIndex == 7);
3182 STATIC_ASSERT(FCA::kArgsLength == 8);
3183
3184 __ pop(return_address);
3185
3186 // new target
3187 __ PushRoot(Heap::kUndefinedValueRootIndex);
3188
3189 // context save.
3190 __ push(context);
3191
3192 // callee
3193 __ push(callee);
3194
3195 // call data
3196 __ push(call_data);
3197
3198 Register scratch = call_data;
3199 if (!call_data_undefined()) {
3200 // return value
3201 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
3202 // return value default
3203 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
3204 } else {
3205 // return value
3206 __ push(scratch);
3207 // return value default
3208 __ push(scratch);
3209 }
3210 // isolate
3211 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
3212 // holder
3213 __ push(holder);
3214
3215 __ mov(scratch, esp);
3216
3217 // push return address
3218 __ push(return_address);
3219
3220 if (!is_lazy()) {
3221 // load context from callee
3222 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
3223 }
3224
3225 // API function gets reference to the v8::Arguments. If CPU profiler
3226 // is enabled wrapper function will be called and we need to pass
3227 // address of the callback as additional parameter, always allocate
3228 // space for it.
3229 const int kApiArgc = 1 + 1;
3230
3231 // Allocate the v8::Arguments structure in the arguments' space since
3232 // it's not controlled by GC.
3233 const int kApiStackSpace = 3;
3234
3235 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
3236
3237 // FunctionCallbackInfo::implicit_args_.
3238 __ mov(ApiParameterOperand(2), scratch);
3239 __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
3240 // FunctionCallbackInfo::values_.
3241 __ mov(ApiParameterOperand(3), scratch);
3242 // FunctionCallbackInfo::length_.
3243 __ Move(ApiParameterOperand(4), Immediate(argc()));
3244
3245 // v8::InvocationCallback's argument.
3246 __ lea(scratch, ApiParameterOperand(2));
3247 __ mov(ApiParameterOperand(0), scratch);
3248
3249 ExternalReference thunk_ref =
3250 ExternalReference::invoke_function_callback(masm->isolate());
3251
3252 Operand context_restore_operand(ebp,
3253 (2 + FCA::kContextSaveIndex) * kPointerSize);
3254 // Stores return the first js argument
3255 int return_value_offset = 0;
3256 if (is_store()) {
3257 return_value_offset = 2 + FCA::kArgsLength;
3258 } else {
3259 return_value_offset = 2 + FCA::kReturnValueOffset;
3260 }
3261 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
3262 int stack_space = 0;
3263 Operand length_operand = ApiParameterOperand(4);
3264 Operand* stack_space_operand = &length_operand;
3265 stack_space = argc() + FCA::kArgsLength + 1;
3266 stack_space_operand = nullptr;
3267 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3268 ApiParameterOperand(1), stack_space,
3269 stack_space_operand, return_value_operand,
3270 &context_restore_operand);
3271 }
3272
3273
Generate(MacroAssembler * masm)3274 void CallApiGetterStub::Generate(MacroAssembler* masm) {
3275 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3276 // name below the exit frame to make GC aware of them.
3277 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3278 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3279 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3280 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3281 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3282 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3283 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3284 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3285
3286 Register receiver = ApiGetterDescriptor::ReceiverRegister();
3287 Register holder = ApiGetterDescriptor::HolderRegister();
3288 Register callback = ApiGetterDescriptor::CallbackRegister();
3289 Register scratch = ebx;
3290 DCHECK(!AreAliased(receiver, holder, callback, scratch));
3291
3292 __ pop(scratch); // Pop return address to extend the frame.
3293 __ push(receiver);
3294 __ push(FieldOperand(callback, AccessorInfo::kDataOffset));
3295 __ PushRoot(Heap::kUndefinedValueRootIndex); // ReturnValue
3296 // ReturnValue default value
3297 __ PushRoot(Heap::kUndefinedValueRootIndex);
3298 __ push(Immediate(ExternalReference::isolate_address(isolate())));
3299 __ push(holder);
3300 __ push(Immediate(Smi::kZero)); // should_throw_on_error -> false
3301 __ push(FieldOperand(callback, AccessorInfo::kNameOffset));
3302 __ push(scratch); // Restore return address.
3303
3304 // v8::PropertyCallbackInfo::args_ array and name handle.
3305 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3306
3307 // Allocate v8::PropertyCallbackInfo object, arguments for callback and
3308 // space for optional callback address parameter (in case CPU profiler is
3309 // active) in non-GCed stack space.
3310 const int kApiArgc = 3 + 1;
3311
3312 // Load address of v8::PropertyAccessorInfo::args_ array.
3313 __ lea(scratch, Operand(esp, 2 * kPointerSize));
3314
3315 PrepareCallApiFunction(masm, kApiArgc);
3316 // Create v8::PropertyCallbackInfo object on the stack and initialize
3317 // it's args_ field.
3318 Operand info_object = ApiParameterOperand(3);
3319 __ mov(info_object, scratch);
3320
3321 // Name as handle.
3322 __ sub(scratch, Immediate(kPointerSize));
3323 __ mov(ApiParameterOperand(0), scratch);
3324 // Arguments pointer.
3325 __ lea(scratch, info_object);
3326 __ mov(ApiParameterOperand(1), scratch);
3327 // Reserve space for optional callback address parameter.
3328 Operand thunk_last_arg = ApiParameterOperand(2);
3329
3330 ExternalReference thunk_ref =
3331 ExternalReference::invoke_accessor_getter_callback(isolate());
3332
3333 __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
3334 Register function_address = edx;
3335 __ mov(function_address,
3336 FieldOperand(scratch, Foreign::kForeignAddressOffset));
3337 // +3 is to skip prolog, return address and name handle.
3338 Operand return_value_operand(
3339 ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
3340 CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
3341 kStackUnwindSpace, nullptr, return_value_operand,
3342 NULL);
3343 }
3344
3345 #undef __
3346
3347 } // namespace internal
3348 } // namespace v8
3349
3350 #endif // V8_TARGET_ARCH_IA32
3351