• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips64/assembler-mips64.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
SupportsSimd128()52 bool CpuFeatures::SupportsSimd128() { return false; }
53 
54 // -----------------------------------------------------------------------------
55 // Operand and MemOperand.
56 
Operand(int64_t immediate,RelocInfo::Mode rmode)57 Operand::Operand(int64_t immediate, RelocInfo::Mode rmode)  {
58   rm_ = no_reg;
59   imm64_ = immediate;
60   rmode_ = rmode;
61 }
62 
63 
Operand(const ExternalReference & f)64 Operand::Operand(const ExternalReference& f)  {
65   rm_ = no_reg;
66   imm64_ = reinterpret_cast<int64_t>(f.address());
67   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
68 }
69 
70 
Operand(Smi * value)71 Operand::Operand(Smi* value) {
72   rm_ = no_reg;
73   imm64_ =  reinterpret_cast<intptr_t>(value);
74   rmode_ = RelocInfo::NONE32;
75 }
76 
77 
Operand(Register rm)78 Operand::Operand(Register rm) {
79   rm_ = rm;
80 }
81 
82 
is_reg()83 bool Operand::is_reg() const {
84   return rm_.is_valid();
85 }
86 
87 
88 // -----------------------------------------------------------------------------
89 // RelocInfo.
90 
apply(intptr_t delta)91 void RelocInfo::apply(intptr_t delta) {
92   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
93     // Absolute code pointer inside code object moves with the code object.
94     byte* p = reinterpret_cast<byte*>(pc_);
95     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
96     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
97   }
98 }
99 
100 
target_address()101 Address RelocInfo::target_address() {
102   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
103   return Assembler::target_address_at(pc_, host_);
104 }
105 
target_address_address()106 Address RelocInfo::target_address_address() {
107   DCHECK(IsCodeTarget(rmode_) ||
108          IsRuntimeEntry(rmode_) ||
109          rmode_ == EMBEDDED_OBJECT ||
110          rmode_ == EXTERNAL_REFERENCE);
111   // Read the address of the word containing the target_address in an
112   // instruction stream.
113   // The only architecture-independent user of this function is the serializer.
114   // The serializer uses it to find out how many raw bytes of instruction to
115   // output before the next target.
116   // For an instruction like LUI/ORI where the target bits are mixed into the
117   // instruction bits, the size of the target will be zero, indicating that the
118   // serializer should not step forward in memory after a target is resolved
119   // and written. In this case the target_address_address function should
120   // return the end of the instructions to be patched, allowing the
121   // deserializer to deserialize the instructions as raw bytes and put them in
122   // place, ready to be patched with the target. After jump optimization,
123   // that is the address of the instruction that follows J/JAL/JR/JALR
124   // instruction.
125   // return reinterpret_cast<Address>(
126   //  pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
127   return reinterpret_cast<Address>(
128     pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
129 }
130 
131 
constant_pool_entry_address()132 Address RelocInfo::constant_pool_entry_address() {
133   UNREACHABLE();
134   return NULL;
135 }
136 
137 
target_address_size()138 int RelocInfo::target_address_size() {
139   return Assembler::kSpecialTargetSize;
140 }
141 
target_address_at(Address pc,Code * code)142 Address Assembler::target_address_at(Address pc, Code* code) {
143   Address constant_pool = code ? code->constant_pool() : NULL;
144   return target_address_at(pc, constant_pool);
145 }
146 
set_target_address_at(Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode)147 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
148                                       Address target,
149                                       ICacheFlushMode icache_flush_mode) {
150   Address constant_pool = code ? code->constant_pool() : NULL;
151   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
152 }
153 
target_address_from_return_address(Address pc)154 Address Assembler::target_address_from_return_address(Address pc) {
155   return pc - kCallTargetAddressOffset;
156 }
157 
158 
set_target_internal_reference_encoded_at(Address pc,Address target)159 void Assembler::set_target_internal_reference_encoded_at(Address pc,
160                                                          Address target) {
161   // Encoded internal references are j/jal instructions.
162   Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
163 
164   uint64_t imm28 =
165       (reinterpret_cast<uint64_t>(target) & static_cast<uint64_t>(kImm28Mask));
166 
167   instr &= ~kImm26Mask;
168   uint64_t imm26 = imm28 >> 2;
169   DCHECK(is_uint26(imm26));
170 
171   instr_at_put(pc, instr | (imm26 & kImm26Mask));
172   // Currently used only by deserializer, and all code will be flushed
173   // after complete deserialization, no need to flush on each reference.
174 }
175 
176 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)177 void Assembler::deserialization_set_target_internal_reference_at(
178     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
179   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
180     DCHECK(IsJ(instr_at(pc)));
181     set_target_internal_reference_encoded_at(pc, target);
182   } else {
183     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
184     Memory::Address_at(pc) = target;
185   }
186 }
187 
188 
target_object()189 Object* RelocInfo::target_object() {
190   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
191   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
192 }
193 
194 
target_object_handle(Assembler * origin)195 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
196   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
197   return Handle<Object>(reinterpret_cast<Object**>(
198       Assembler::target_address_at(pc_, host_)));
199 }
200 
201 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)202 void RelocInfo::set_target_object(Object* target,
203                                   WriteBarrierMode write_barrier_mode,
204                                   ICacheFlushMode icache_flush_mode) {
205   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
206   Assembler::set_target_address_at(isolate_, pc_, host_,
207                                    reinterpret_cast<Address>(target),
208                                    icache_flush_mode);
209   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
210       host() != NULL &&
211       target->IsHeapObject()) {
212     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
213         host(), this, HeapObject::cast(target));
214     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
215   }
216 }
217 
218 
target_external_reference()219 Address RelocInfo::target_external_reference() {
220   DCHECK(rmode_ == EXTERNAL_REFERENCE);
221   return Assembler::target_address_at(pc_, host_);
222 }
223 
224 
target_internal_reference()225 Address RelocInfo::target_internal_reference() {
226   if (rmode_ == INTERNAL_REFERENCE) {
227     return Memory::Address_at(pc_);
228   } else {
229     // Encoded internal references are j/jal instructions.
230     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
231     Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
232     instr &= kImm26Mask;
233     uint64_t imm28 = instr << 2;
234     uint64_t segment =
235         (reinterpret_cast<uint64_t>(pc_) & ~static_cast<uint64_t>(kImm28Mask));
236     return reinterpret_cast<Address>(segment | imm28);
237   }
238 }
239 
240 
target_internal_reference_address()241 Address RelocInfo::target_internal_reference_address() {
242   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
243   return reinterpret_cast<Address>(pc_);
244 }
245 
246 
target_runtime_entry(Assembler * origin)247 Address RelocInfo::target_runtime_entry(Assembler* origin) {
248   DCHECK(IsRuntimeEntry(rmode_));
249   return target_address();
250 }
251 
252 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)253 void RelocInfo::set_target_runtime_entry(Address target,
254                                          WriteBarrierMode write_barrier_mode,
255                                          ICacheFlushMode icache_flush_mode) {
256   DCHECK(IsRuntimeEntry(rmode_));
257   if (target_address() != target)
258     set_target_address(target, write_barrier_mode, icache_flush_mode);
259 }
260 
261 
target_cell_handle()262 Handle<Cell> RelocInfo::target_cell_handle() {
263   DCHECK(rmode_ == RelocInfo::CELL);
264   Address address = Memory::Address_at(pc_);
265   return Handle<Cell>(reinterpret_cast<Cell**>(address));
266 }
267 
268 
target_cell()269 Cell* RelocInfo::target_cell() {
270   DCHECK(rmode_ == RelocInfo::CELL);
271   return Cell::FromValueAddress(Memory::Address_at(pc_));
272 }
273 
274 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)275 void RelocInfo::set_target_cell(Cell* cell,
276                                 WriteBarrierMode write_barrier_mode,
277                                 ICacheFlushMode icache_flush_mode) {
278   DCHECK(rmode_ == RelocInfo::CELL);
279   Address address = cell->address() + Cell::kValueOffset;
280   Memory::Address_at(pc_) = address;
281   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
282     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
283                                                                   cell);
284   }
285 }
286 
287 
288 static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
289 
290 
code_age_stub_handle(Assembler * origin)291 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
292   UNREACHABLE();  // This should never be reached on Arm.
293   return Handle<Object>();
294 }
295 
296 
code_age_stub()297 Code* RelocInfo::code_age_stub() {
298   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
299   return Code::GetCodeFromTargetAddress(
300       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
301 }
302 
303 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)304 void RelocInfo::set_code_age_stub(Code* stub,
305                                   ICacheFlushMode icache_flush_mode) {
306   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
307   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
308                                    stub->instruction_start());
309 }
310 
311 
debug_call_address()312 Address RelocInfo::debug_call_address() {
313   // The pc_ offset of 0 assumes patched debug break slot or return
314   // sequence.
315   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
316   return Assembler::target_address_at(pc_, host_);
317 }
318 
319 
set_debug_call_address(Address target)320 void RelocInfo::set_debug_call_address(Address target) {
321   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
322   // The pc_ offset of 0 assumes patched debug break slot or return
323   // sequence.
324   Assembler::set_target_address_at(isolate_, pc_, host_, target);
325   if (host() != NULL) {
326     Object* target_code = Code::GetCodeFromTargetAddress(target);
327     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
328         host(), this, HeapObject::cast(target_code));
329   }
330 }
331 
332 
WipeOut()333 void RelocInfo::WipeOut() {
334   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
335          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
336          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
337   if (IsInternalReference(rmode_)) {
338     Memory::Address_at(pc_) = NULL;
339   } else if (IsInternalReferenceEncoded(rmode_)) {
340     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
341   } else {
342     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
343   }
344 }
345 
346 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)347 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
348   RelocInfo::Mode mode = rmode();
349   if (mode == RelocInfo::EMBEDDED_OBJECT) {
350     visitor->VisitEmbeddedPointer(this);
351   } else if (RelocInfo::IsCodeTarget(mode)) {
352     visitor->VisitCodeTarget(this);
353   } else if (mode == RelocInfo::CELL) {
354     visitor->VisitCell(this);
355   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
356     visitor->VisitExternalReference(this);
357   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
358              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
359     visitor->VisitInternalReference(this);
360   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
361     visitor->VisitCodeAgeSequence(this);
362   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
363              IsPatchedDebugBreakSlotSequence()) {
364     visitor->VisitDebugTarget(this);
365   } else if (RelocInfo::IsRuntimeEntry(mode)) {
366     visitor->VisitRuntimeEntry(this);
367   }
368 }
369 
370 
371 template<typename StaticVisitor>
Visit(Heap * heap)372 void RelocInfo::Visit(Heap* heap) {
373   RelocInfo::Mode mode = rmode();
374   if (mode == RelocInfo::EMBEDDED_OBJECT) {
375     StaticVisitor::VisitEmbeddedPointer(heap, this);
376   } else if (RelocInfo::IsCodeTarget(mode)) {
377     StaticVisitor::VisitCodeTarget(heap, this);
378   } else if (mode == RelocInfo::CELL) {
379     StaticVisitor::VisitCell(heap, this);
380   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
381     StaticVisitor::VisitExternalReference(this);
382   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
383              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
384     StaticVisitor::VisitInternalReference(this);
385   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
386     StaticVisitor::VisitCodeAgeSequence(heap, this);
387   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
388              IsPatchedDebugBreakSlotSequence()) {
389     StaticVisitor::VisitDebugTarget(heap, this);
390   } else if (RelocInfo::IsRuntimeEntry(mode)) {
391     StaticVisitor::VisitRuntimeEntry(this);
392   }
393 }
394 
395 
396 // -----------------------------------------------------------------------------
397 // Assembler.
398 
399 
CheckBuffer()400 void Assembler::CheckBuffer() {
401   if (buffer_space() <= kGap) {
402     GrowBuffer();
403   }
404 }
405 
406 
CheckTrampolinePoolQuick(int extra_instructions)407 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
408   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
409     CheckTrampolinePool();
410   }
411 }
412 
413 
CheckForEmitInForbiddenSlot()414 void Assembler::CheckForEmitInForbiddenSlot() {
415   if (!is_buffer_growth_blocked()) {
416     CheckBuffer();
417   }
418   if (IsPrevInstrCompactBranch()) {
419     // Nop instruction to preceed a CTI in forbidden slot:
420     Instr nop = SPECIAL | SLL;
421     *reinterpret_cast<Instr*>(pc_) = nop;
422     pc_ += kInstrSize;
423 
424     ClearCompactBranchState();
425   }
426 }
427 
428 
EmitHelper(Instr x,CompactBranchType is_compact_branch)429 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
430   if (IsPrevInstrCompactBranch()) {
431     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
432       // Nop instruction to preceed a CTI in forbidden slot:
433       Instr nop = SPECIAL | SLL;
434       *reinterpret_cast<Instr*>(pc_) = nop;
435       pc_ += kInstrSize;
436     }
437     ClearCompactBranchState();
438   }
439   *reinterpret_cast<Instr*>(pc_) = x;
440   pc_ += kInstrSize;
441   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
442     EmittedCompactBranchInstruction();
443   }
444   CheckTrampolinePoolQuick();
445 }
446 
447 template <>
448 inline void Assembler::EmitHelper(uint8_t x);
449 
450 template <typename T>
EmitHelper(T x)451 void Assembler::EmitHelper(T x) {
452   *reinterpret_cast<T*>(pc_) = x;
453   pc_ += sizeof(x);
454   CheckTrampolinePoolQuick();
455 }
456 
457 template <>
EmitHelper(uint8_t x)458 void Assembler::EmitHelper(uint8_t x) {
459   *reinterpret_cast<uint8_t*>(pc_) = x;
460   pc_ += sizeof(x);
461   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
462     CheckTrampolinePoolQuick();
463   }
464 }
465 
emit(Instr x,CompactBranchType is_compact_branch)466 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
467   if (!is_buffer_growth_blocked()) {
468     CheckBuffer();
469   }
470   EmitHelper(x, is_compact_branch);
471 }
472 
473 
emit(uint64_t data)474 void Assembler::emit(uint64_t data) {
475   CheckForEmitInForbiddenSlot();
476   EmitHelper(data);
477 }
478 
479 
480 }  // namespace internal
481 }  // namespace v8
482 
483 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
484