/third_party/mindspore/tests/ut/python/parallel/ |
D | test_conv2d_transpose.py | 40 class Net2(Cell): class 92 net = Net2(_w2, out_channel=8, kernel_size=(4, 4), pad_mode="same", stride=2, 101 net = Net2(_w2, out_channel=8, kernel_size=(4, 4), pad_mode="same", stride=2, 110 net = Net2(_w1, out_channel=8, kernel_size=(2, 2), pad_mode="same", stride=2, 119 net = Net2(_w1, out_channel=8, kernel_size=(2, 2), pad_mode="pad", stride=2, 129 net = Net2(_w1, out_channel=8, kernel_size=(2, 2), pad_mode="same", stride=2, 139 net = Net2(_w3, out_channel=8, kernel_size=(10, 10), pad_mode="same", stride=2, 149 net = Net2(_w2, out_channel=8, kernel_size=(4, 4), pad_mode="same", stride=2, 159 net = Net2(_w4, out_channel=8, kernel_size=(3, 3), pad_mode="same", stride=2,
|
D | test_split.py | 56 class Net2(nn.Cell): class 58 super(Net2, self).__init__() 126 net = Net2(_w2, 0, 2, strategy1, strategy2) 134 net = Net2(_w2, 0, 2, strategy1, strategy2) 142 net = Net2(_w2, 0, 2, strategy1, strategy2) 148 net = Net2(_w2, 0, 2)
|
D | test_concat.py | 40 class Net2(Cell): class 119 net = Net2(_w1, strategy1, strategy2) 127 net = Net2(_w1, strategy1, strategy2) 135 net = Net2(_w3, strategy1, strategy2, axis=1) 141 net = Net2(_w2) 149 net = Net2(_w3, strategy1, strategy2, axis=1)
|
D | test_shared_param_and_mix_precision.py | 44 class Net2(nn.Cell): class 47 super(Net2, self).__init__() 90 auto_parallel_compile_net("semi_auto_parallel", 8, Net2, ((8, 1), (1, 1)), ((8, 1), (1, 1))) 95 …auto_parallel_compile_net("semi_auto_parallel", 8, Net2, ((8, 1), (1, 1)), ((8, 1), (1, 1)), True,… 101 … auto_parallel_compile_net("semi_auto_parallel", 8, Net2, ((8, 1), (1, 1)), ((8, 1), (1, 1)), True)
|
D | test_slice.py | 46 class Net2(Cell): class 112 net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2) 120 net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2) 128 net = Net2(_w2, (0, 0, 0), (128, 64, 1), strategy1, strategy2) 134 net = Net2(_w2, (0, 0, 0), (32, 64, 1))
|
D | test_parallel_optimizer.py | 54 class Net2(nn.Cell): class 57 super(Net2, self).__init__() 101 auto_parallel_compile_net("auto_parallel", 8, Net2) 106 auto_parallel_compile_net("auto_parallel", 8, Net2, ((8, 1), (1, 1)), ((8, 1), (1, 1))) 112 …train_network = auto_parallel_compile_net("semi_auto_parallel", 32, Net2, ((4, 8), (8, 1)), ((4, 4… 122 auto_parallel_compile_net("semi_auto_parallel", 32, Net2, ((4, 4), (4, 1)), ((4, 4), (4, 2))) 138 …train_network = auto_parallel_compile_net("semi_auto_parallel", 32, Net2, ((4, 8), (8, 1)), ((4, 4…
|
D | test_model_without_loss.py | 63 class Net2(Cell): class 148 net = Net2(_w1, strategy1, strategy2) 157 net = Net2(_w1, strategy1, strategy2) 166 net = Net2(_w3, strategy1, strategy2, axis=1) 173 net = Net2(_w2) 182 net = Net2(_w3, strategy1, strategy2, axis=1)
|
D | test_resizebilinear.py | 42 class Net2(Cell): class 48 super(Net2, self).__init__() 133 net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, 142 net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, 149 net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1)
|
D | test_stridedslice.py | 47 class Net2(Cell): class 141 net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2) 149 net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2) 157 net = Net2(_w2, (0, 0, 0), (128, 64, 1), (1, 1, 1), strategy1, strategy2) 163 net = Net2(_w2, (0, 0, 0), (32, 64, 1), (1, 1, 1))
|
D | test_tile.py | 43 class Net2(Cell): class 133 net = Net2(_w2, strategy1, strategy2) 141 net = Net2(_w2, strategy1, strategy2) 149 net = Net2(_w2, strategy1, strategy2) 155 net = Net2(_w2)
|
D | test_batchnorm.py | 78 class Net2(Cell): class 108 net = Net2(strategy1=strategy1, strategy2=strategy2) 116 net = Net2(strategy1=strategy1, strategy2=strategy2) 124 net = Net2(strategy1=strategy1, strategy2=strategy2)
|
D | test_o2_level.py | 70 class Net2(Cell): class 181 net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2) 190 net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2) 199 net = Net2(_w2, (0, 0, 0), (128, 64, 1), (1, 1, 1), strategy1, strategy2) 206 net = Net2(_w2, (0, 0, 0), (32, 64, 1), (1, 1, 1))
|
D | test_print.py | 83 class Net2(Cell): class 113 net = Net2(strategy1=strategy1, strategy2=strategy2) 121 net = Net2(strategy1=strategy1, strategy2=strategy2) 129 net = Net2(strategy1=strategy1, strategy2=strategy2)
|
D | test_gathernd_further.py | 63 class Net2(Cell): class 154 net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3) 166 net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3) 178 net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3) 262 net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3) 274 net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3) 286 net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
D | test_maxpool_avgpool.py | 40 class Net2(Cell): class 167 …net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_… 176 …net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_… 185 …net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_… 192 …net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_…
|
D | test_virtual_dataset_with_strategy.py | 62 class Net2(nn.Cell): class 123 net = GradWrap(NetWithLoss(Net2(strategy1, strategy2, strategy3))) 137 net = GradWrap(NetWithLoss(Net2(strategy1, strategy2, strategy3))) 151 net = GradWrap(NetWithLoss(Net2(strategy1, strategy2, strategy3))) 165 net = GradWrap(NetWithLoss(Net2(strategy1, strategy2, strategy3)))
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_dropout_op.py | 69 class Net2(nn.Cell): class 71 super(Net2, self).__init__() 83 dropout = Net2()
|
/third_party/mindspore/tests/st/heterogeneous_excutor/ |
D | test_control.py | 41 class Net2(nn.Cell): class 43 super(Net2, self).__init__() 63 net2 = Net2()
|
/third_party/mindspore/tests/ut/python/pipeline/parse/ |
D | test_compile.py | 65 class Net2(nn.Cell): class 69 super(Net2, self).__init__() 85 net = Net2()
|
/third_party/mindspore/tests/st/ops/graph_kernel/ |
D | test_low_precision.py | 60 class Net2(Cell): class 62 super(Net2, self).__init__() 82 expect = get_output(x, y, Net2, False) 83 output = get_output(x, y, Net2, True)
|
/third_party/mindspore/tests/st/probability/bijector/ |
D | test_scalar_affine.py | 63 class Net2(nn.Cell): class 68 super(Net2, self).__init__() 75 forward_jacobian = Net2()
|
D | test_exp.py | 67 class Net2(nn.Cell): class 72 super(Net2, self).__init__() 81 forward_jacobian = Net2()
|
D | test_softplus.py | 63 class Net2(nn.Cell): class 68 super(Net2, self).__init__() 75 forward_jacobian = Net2()
|
D | test_invert.py | 63 class Net2(nn.Cell): class 68 super(Net2, self).__init__() 77 forward_jacobian = Net2()
|
/third_party/mindspore/tests/ut/python/pynative_mode/ |
D | test_tuple_parameter.py | 50 class Net2(nn.Cell): class 52 super(Net2, self).__init__() 71 net2 = Net2()
|