/third_party/mindspore/tests/ut/python/ops/ |
D | test_tensor_slice.py | 657 input_3d_np = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) 774 Tensor(np.random.randint(6, size=(5, 4)), mstype.int32)], 779 Tensor(np.random.randint(6, size=(3, 4, 5)), mstype.int32), 780 Tensor(np.random.randint(7, size=(4, 5)), mstype.int32)], 785 Tensor(np.random.randint(6, size=(3, 4, 5)), mstype.int32), 786 Tensor(np.random.randint(7, size=(4, 5)), mstype.int32), 787 Tensor(np.random.randint(8, size=(5, 3, 4, 5)), mstype.int32)], 792 Tensor(np.random.randint(3, size=(3, 4, 5)), mstype.int32), 793 Tensor(np.random.randint(4, size=(4, 5)), mstype.int32)], 798 Tensor(np.random.randint(3, size=(3, 4, 5)), mstype.int32), [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_arithmetic_op.py | 89 x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop 90 y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop 91 x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop 92 y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop 93 x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop 94 y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop 95 x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop 96 y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop 99 x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop 100 y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop [all …]
|
D | test_less_equal_op.py | 36 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 37 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 38 x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 39 y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) 40 x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32) 41 y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 42 x3_np = np.random.randint(1, 5, 1).astype(np.float32) 43 y3_np = np.random.randint(1, 5, 1).astype(np.float32) 90 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) 91 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) [all …]
|
D | test_less_op.py | 36 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 37 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 38 x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 39 y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) 40 x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32) 41 y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 42 x3_np = np.random.randint(1, 5, 1).astype(np.float32) 43 y3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
D | test_realdiv_op.py | 38 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 39 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 40 x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 41 y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) 42 x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32) 43 y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 44 x3_np = np.random.randint(1, 5, 1).astype(np.float32) 45 y3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
D | test_time_distributed_op.py | 40 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 55 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 70 inputs = np.random.randint(0, 10, [32, 10]) 86 inputs = np.random.randint(0, 10, [32, 10]) 101 inputs = np.random.randint(0, 10, [32, 10]) 116 inputs = np.random.randint(0, 10, [3, 4]) 131 inputs = np.random.randint(0, 10, [3, 4, 5]) 146 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 161 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 176 inputs = np.random.randint(0, 10, [32, 10]) [all …]
|
D | test_gather_d_grad_op.py | 55 index = np.random.randint(0, 5, (5, 3, 5)).astype(np.int32) 60 dout = np.random.randint(0, 5, index.shape).astype(np.float32) * prop 73 index = np.random.randint(0, 5, (3, 5, 5)).astype(np.int32) 78 dout = np.random.randint(0, 5, index.shape).astype(np.float16) * prop 91 index = np.random.randint(0, 5, (5, 5, 7)).astype(np.int64) 96 dout = np.random.randint(0, 5, index.shape).astype(np.int32) * prop
|
D | test_pow_op.py | 38 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 39 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 40 x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
D | test_searchsorted_op.py | 41 input1 = np.sort(np.array(np.random.randint(10, size=(2, 3, 9)), dtype=np.int32), axis=-1) 43 input2 = np.array(np.random.randint(10, size=(2, 3, 1)), dtype=np.int32) 63 input1 = np.sort(np.array(np.random.randint(10, size=(2, 3, 9)), dtype=np.int64), axis=-1) 65 input2 = np.array(np.random.randint(10, size=(2, 3, 1)), dtype=np.int64)
|
D | test_gather_d_op.py | 42 index = np.random.randint(0, 5, (5, 3, 5)).astype(np.int32) 63 index = np.random.randint(0, 5, (3, 5, 5)).astype(np.int64) 85 index = np.random.randint(0, 5, (5, 5, 8)).astype(np.int32) 106 index = np.random.randint(0, 5, (5, 5, 8)).astype(np.int32)
|
/third_party/ltp/testcases/network/nfsv4/acl/ |
D | random_gen.py | 32 group = self.gList[random.randint(0,len(self.gList)-1)][0] 154 l=random.randint(0,maxlength) 156 a = random.randint(0,a_length-1) 164 a = random.randint(0,a_length-1) 178 type = ace_type[random.randint(0,len(ace_type))] 179 flag = ace_flags[random.randint(0,len(ace_flags))] 180 mask = ace_mask[random.randint(0,len(ace_mask))] 181 who = ace_who[random.randint(0,len(ace_who))] 190 n = random.randint(0,userListSize-1) 200 if random.randint(0,1) == 1: [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_floordiv_op.py | 36 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 37 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 38 x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 39 y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) 40 x2_np = np.random.randint(1, 5, (2, 1, 1, 4, 9)).astype(np.float32) 41 y2_np = np.random.randint(1, 5, (2, 3, 4, 4, 9)).astype(np.float32) 42 x3_np = np.random.randint(1, 5, 1).astype(np.float32) 43 y3_np = np.random.randint(1, 5, 1).astype(np.float32) 46 x5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) 47 y5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) [all …]
|
D | test_div_op.py | 33 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) 34 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) 35 x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) 36 y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(nptype) 37 x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(nptype) 38 y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) 39 x3_np = np.random.randint(1, 5, 1).astype(nptype) 40 y3_np = np.random.randint(1, 5, 1).astype(nptype)
|
D | test_time_distributed_op.py | 40 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 55 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 70 inputs = np.random.randint(0, 10, [32, 10]) 85 inputs = np.random.randint(0, 10, [32, 10]) 100 inputs = np.random.randint(0, 10, [3, 4]) 115 inputs = np.random.randint(0, 10, [3, 4, 5]) 130 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 145 inputs = np.random.randint(0, 10, [32, 12, 10, 10]) 160 inputs = np.random.randint(0, 10, [32, 10]) 175 inputs = np.random.randint(0, 10, [3, 4]) [all …]
|
D | test_realdiv_op.py | 38 x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 39 y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 40 x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 41 y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) 42 x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32) 43 y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) 44 x3_np = np.random.randint(1, 5, 1).astype(np.float32) 45 y3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
D | test_pyfunc_op.py | 50 x1 = np.random.randint(-5, 5, size=shape).astype(np_dtype) 51 x2 = np.random.randint(-5, 5, size=shape).astype(np_dtype) 82 x1 = np.random.randint(-5, 5, size=shape).astype(np.float32) 83 x2 = np.random.randint(-5, 5, size=shape).astype(np.float32) 110 x1 = np.random.randint(-5, 5, size=shape).astype(np.float32) 111 x2 = np.random.randint(-5, 5, size=shape).astype(np.float32)
|
/third_party/mindspore/tests/ut/python/nn/ |
D | test_dense.py | 37 input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32)) 46 input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32)) 55 input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32)) 114 weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32)) 115 bias = Tensor(np.random.randint(0, 255, [8]).astype(np.float32)) 117 input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32)) 129 weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32)) 131 input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32)) 146 input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32)) 161 input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32))
|
D | test_checkparameter.py | 25 a = np.random.randint(-100, 100) 47 a = np.random.randint(1, 100) 51 a = np.random.randint(-100, 0) 64 a = np.random.randint(-100, -1) 68 a = np.random.randint(0, 100) 81 a = np.random.randint(-100, 0) 85 a = np.random.randint(1, 100)
|
/third_party/mindspore/tests/ut/python/utils/ |
D | test_serialize.py | 65 _input_x = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) 108 one_param['data'] = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), dtype=mstype.float32) 110 param1['data'] = Tensor(np.random.randint(0, 255, [12, 1024]), dtype=mstype.float32) 112 param2['data'] = Tensor(np.random.randint(0, 255, [12, 1024, 1]), dtype=mstype.float32) 132 one_param['data'] = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), dtype=mstype.float32) 134 param1['data'] = Tensor(np.random.randint(0, 255, [12, 1024]), dtype=mstype.float32) 136 param2['data'] = Tensor(np.random.randint(0, 255, [12, 1024, 1]), dtype=mstype.float32) 376 input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) 384 input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) 391 input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) [all …]
|
/third_party/mindspore/tests/ut/python/pynative_mode/nn/ |
D | test_dense.py | 31 input_data = Tensor(np.random.randint(0, 255, [1, 3]).astype(np.float32)) 41 input_data = Tensor(np.random.randint(0, 255, [1, 3]).astype(np.float32)) 52 input_data = Tensor(np.random.randint(0, 255, [2, 3]).astype(np.float32)) 62 input_data = Tensor(np.random.randint(0, 255, [2, 3]).astype(np.float32)) 77 input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32))
|
D | test_batchnorm.py | 61 input_data = Tensor(np.random.randint(0, 1, [1, 3, 224, 224]).astype(np.float32)) 70 input_data = Tensor(np.random.randint(0, 1, [1, 3]).astype(np.float32)) 80 Tensor(np.random.randint(0, 255, [1, 3, 224, 224]))
|
D | test_loss.py | 37 logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) 38 labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
|
/third_party/mindspore/tests/st/pynative/ |
D | test_tensor_getitem.py | 183 index_0 = np.random.randint(6, size=(3, 4, 5)).astype(np.int32) 184 index_1 = np.random.randint(6, size=(4, 5)).astype(np.int32) 185 index_2 = np.random.randint(6, size=(5, 3, 4, 5)).astype(np.int32) 231 index_np_0 = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) 232 index_np_1 = np.random.randint(4, size=(4, 5)).astype(np.int32) 259 input_3d_np = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) 285 input_3d_np = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) 320 input_3d_np = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) 370 index_0 = np.random.randint(3, size=(3, 4, 5)) 371 index_1 = np.random.randint(4, size=(4, 5)) [all …]
|
/third_party/mindspore/tests/ut/python/dataset/ |
D | test_slice_patches.py | 144 image = np.random.randint(0, 255, (158, 126, 1)).astype(np.int32) 151 image = np.random.randint(0, 255, (158, 126)).astype(np.int32) 158 np_data = np.random.randint(0, 255, (1, 56, 82, 256)).astype(np.uint8) 169 image = np.random.randint(0, 255, (56, 82, 256)).astype(np.uint8) 176 image = np.random.randint(0, 255, (7000, 7000, 255)).astype(np.uint8) 182 np_data = np.random.randint(0, 255, (1, 7000, 7000, 256)).astype(np.uint8)
|
/third_party/mindspore/tests/ut/python/pipeline/parse/ |
D | test_operator.py | 173 x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32)) 174 y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32)) 200 x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32)) 201 y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32)) 202 z = Tensor(np.random.randint(low=20, high=30, size=(2, 3, 4), dtype=np.int32))
|