/third_party/mindspore/tests/ut/python/parallel/ |
D | test_broadcast_to.py | 26 def __init__(self, weight1, strategy1=None, strategy2=None, is_parameter=True): argument 32 self.weight1 = Parameter(weight1, "w1") 34 self.weight1 = weight1 37 out = self.broadcast(self.weight1) 43 def __init__(self, weight1, strategy1=None, strategy2=None, strategy3=None, is_parameter=True): argument 50 self.weight1 = Parameter(weight1, "w1") 52 self.weight1 = weight1 57 out = self.mul(out, self.weight1)
|
D | test_neighborexchange.py | 48 def __init__(self, weight1): argument 55 self.weight1 = Parameter(weight1, "w1") 59 out = self.mul(out, self.weight1) 76 def __init__(self, weight1): argument 82 self.weight1 = Parameter(weight1, "w1") 86 out = self.mul(out, self.weight1) 169 def __init__(self, weight1): argument 175 self.weight1 = Parameter(weight1, "w1") 179 out = self.mul(out, self.weight1) 197 def __init__(self, weight1): argument [all …]
|
D | test_pack.py | 27 def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None, is_parameter=True): argument 32 self.weight1 = Parameter(weight1, "w1") 34 self.weight1 = weight1 38 out = self.pack([self.weight1, self.weight2]) 44 def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None): argument 48 self.weight1 = Parameter(weight1, "w1") 52 out = self.mul(x, self.weight1) 58 …def __init__(self, weight1, weight2, weight3, axis=0, strategy1=None, strategy2=None, is_parameter… argument 63 self.weight1 = Parameter(weight1, "w1") 65 self.weight1 = weight1 [all …]
|
D | test_auto_parallel_parameter_cast.py | 48 …self.weight1 = Parameter(Tensor(np.ones([64, 64]).astype(np.float16) * 0.01), "w", requires_grad=T… 53 m1_result = self.matmul1(x, self.cast1(self.weight1, mstype.float32)) 54 m2_result = self.matmul2(y, self.cast2(self.weight1, mstype.float32))
|
D | test_strategy_checkpoint.py | 60 self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1") 68 out = self.matmul1(x1, self.weight1) 124 self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1") 131 out = self.matmul1(x1, self.weight1) 188 self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1") 196 out = self.matmul1(x1, self.weight1) 245 self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1") 252 out = self.matmul1(x1, self.weight1)
|
D | test_auto_parallel_rhombus.py | 91 …self.weight1 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad… 95 mm1_out = self.matmul1(x, self.weight1) 122 …self.weight1 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad… 126 mm1_out = self.matmul1(x, self.weight1)
|
D | test_optimizer.py | 34 self.weight1 = Parameter(Tensor(weight_init1), "loss_weight1", layerwise_parallel=True) 41 x = self.fc(x, self.weight1)
|
/third_party/ffmpeg/libavcodec/mips/ |
D | hevc_mc_biw_msa.c | 90 int32_t weight1, in hevc_biwgt_copy_4w_msa() argument 107 weight = weight0 | (weight1 << 16); in hevc_biwgt_copy_4w_msa() 179 int32_t weight1, in hevc_biwgt_copy_6w_msa() argument 196 weight = weight0 | (weight1 << 16); in hevc_biwgt_copy_6w_msa() 233 int32_t weight1, in hevc_biwgt_copy_8w_msa() argument 249 weight = weight0 | (weight1 << 16); in hevc_biwgt_copy_8w_msa() 321 int32_t weight1, in hevc_biwgt_copy_12w_msa() argument 337 weight = weight0 | (weight1 << 16); in hevc_biwgt_copy_12w_msa() 380 int32_t weight1, in hevc_biwgt_copy_16w_msa() argument 396 weight = weight0 | (weight1 << 16); in hevc_biwgt_copy_16w_msa() [all …]
|
/third_party/mindspore/tests/st/dynamic_shape/ |
D | test_ftrl.py | 30 self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") 36 return self.gather(self.weight1, indices, self.axis) + self.weight2 52 np.allclose(net.weight1.asnumpy(), np.array([[[0.7884067, 0.7884067]], 73 np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]])) 92 np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]]))
|
/third_party/mindspore/tests/st/pynative/dynamic_shape/ |
D | test_pynative_ftrl.py | 30 self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") 36 return self.gather(self.weight1, indices, self.axis) + self.weight2 52 np.allclose(net.weight1.asnumpy(), np.array([[[0.7884067, 0.7884067]], 73 np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]]))
|
/third_party/skia/third_party/externals/dng_sdk/source/ |
D | dng_hue_sat_map.cpp | 263 real64 weight1) in Interpolate() argument 266 if (weight1 >= 1.0) in Interpolate() 282 if (weight1 <= 0.0) in Interpolate() 331 real32 w1 = (real32) weight1; in Interpolate()
|
D | dng_hue_sat_map.h | 228 real64 weight1);
|
/third_party/mindspore/tests/st/nccl/ |
D | test_nccl_lenet.py | 42 weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01) 44 … self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid') 49 weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01) 50 self.fc1 = nn.Dense(400, 120, weight_init=weight1)
|
/third_party/pixman/pixman/ |
D | pixman-inlines.h | 954 int weight1, weight2; \ 970 weight1 = BILINEAR_INTERPOLATION_RANGE - weight2; \ 976 weight1 = weight2 = BILINEAR_INTERPOLATION_RANGE / 2; \ 994 buf1, buf2, left_pad, weight1, weight2, 0, 0, 0, FALSE); \ 1002 src1, src2, width, weight1, weight2, vx, unit_x, 0, FALSE); \ 1012 buf1, buf2, right_pad, weight1, weight2, 0, 0, 0, FALSE); \ 1023 weight1 = 0; \ 1028 weight1 = 0; \ 1049 buf1, buf2, left_pad, weight1, weight2, 0, 0, 0, TRUE); \ 1061 buf1, buf2, left_tz, weight1, weight2, \ [all …]
|
/third_party/skia/third_party/externals/swiftshader/src/Shader/ |
D | VertexPipeline.cpp | 88 Float4 weight1; in transformBlend() local 95 case 3: weight1 = v[BlendWeight].y; in transformBlend() 107 weight1 = Float4(1.0f) - weight0; in transformBlend() 115 dst.x = pos0.x * weight0 + pos1.x * weight1; // FIXME: Vector4f operators in transformBlend() 116 dst.y = pos0.y * weight0 + pos1.y * weight1; in transformBlend() 117 dst.z = pos0.z * weight0 + pos1.z * weight1; in transformBlend() 118 dst.w = pos0.w * weight0 + pos1.w * weight1; in transformBlend() 122 weight2 = Float4(1.0f) - (weight0 + weight1); in transformBlend() 132 dst.x = pos0.x * weight0 + pos1.x * weight1 + pos2.x * weight2; in transformBlend() 133 dst.y = pos0.y * weight0 + pos1.y * weight1 + pos2.y * weight2; in transformBlend() [all …]
|
/third_party/mindspore/tests/st/networks/models/ |
D | lenet.py | 26 weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01) 28 … self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/opencl/cl/ |
D | winograd.cl | 150 FLT16 weight0 = weight_ptr[0], weight1 = weight_ptr[1]; 163 out10 += in0.x * weight1.s0123; 164 out10 += in0.y * weight1.s4567; 165 out10 += in0.z * weight1.s89ab; 166 out10 += in0.w * weight1.scdef; 168 out11 += in1.x * weight1.s0123; 169 out11 += in1.y * weight1.s4567; 170 out11 += in1.z * weight1.s89ab; 171 out11 += in1.w * weight1.scdef;
|
D | fullconnection.cl | 71 FLT4 weight1 = READ_IMAGE(weight, smp_zero, (int2)(i, gidx * 4 + 1)); 72 result.y += dot(v, weight1);
|
/third_party/mindspore/tests/ut/python/nn/optim/ |
D | test_ftrl.py | 50 self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") 56 return self.gather(self.weight1, indices, self.axis) + self.weight2
|
D | test_proximal_ada_grad.py | 50 self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") 56 return self.gather(self.weight1, indices, self.axis) + self.weight2
|
D | test_adam.py | 61 self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") 67 return self.gather(self.weight1, indices, self.axis) + self.weight2
|
/third_party/mindspore/tests/ut/cpp/pipeline/static_analysis/ |
D | data_test.cc | 116 tensor::TensorPtr weight1 = std::make_shared<tensor::Tensor>(kNumberTypeInt64, weight1_dims); in TEST_F() local 119 AbstractBasePtr abstract_weight1 = FromValue(weight1, true); in TEST_F() 125 std::vector<ValuePtr> vec({weight1, weight2}); in TEST_F()
|
/third_party/mindspore/tests/ut/python/transform/ |
D | test_transform.py | 125 weight1 = Tensor(np.ones([6, 1, 5, 5]).astype(np.float32) * 0.01) 127 … self.conv1 = nn.Conv2d(1, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
|
/third_party/ffmpeg/libavcodec/ |
D | rv34.h | 111 int weight1, weight2; ///< B-frame distance fractions (0.14) used in motion compensation member
|
/third_party/mindspore/tests/ut/python/optimizer/ |
D | test_auto_grad.py | 187 self.weight1 = Parameter(Tensor(np.array([1.0], dtype=np.float32)), name="weight1") 193 out = out + self.weight1 * self.weight2 195 out = out + self.weight1 224 self.weight1 = Parameter(Tensor(np.array([1.0], dtype=np.float32)), name="weight1") 230 out = inner_add(x, y) + self.weight1
|